An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longw...An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.展开更多
In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches...In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches such as observation data analysis, meteorological model simulation, and remote sensing, a set of climatic environmental performance assessment methods is developed and established. These methods mainly focus on surface ventilation assessment and urban thermal environment assessment. With the Yanqi Lake ecological development demonstration area located in Huairou district, Beijing as an example, the assessment of the local climatic environment before and after the construction are conducted, and relevant policy suggestions for urban planning and construction are presented. The results show that after development, the ventilation capacity will decrease overall and the ventilation potential index will decrease from 0.53 to 0.44. While this is not a large reduction, and is still at a favorable level, the ventilation potential in some local areas will markedly decrease. Furthermore, the thermal environment will become poorer to some extent; the urban heat island(UHI) area and intensity will increase compared with the current situation;continuous heat islands may occur in local areas; the UHI potential index of the core area will rise from 0.0878 to 0.1217(still a favorable level).Therefore, urban surfaces should be carefully developed and arranged during planning. It is suggested that the negative impacts of large areas of urban construction on the local climatic environment in the Yanqi Lake could be mitigated by 1) strengthening the airflow by introducing fresh,cold, northwesterly air via constructed ventilation corridors, 2) increasing the number of ecological cold sources, particularly for water bodies and green belts to prevent the UHI in the southern region of Yanqi Lake from becoming linked with each other, and 3) considering a pre-program before sub-domain and building planning to obtain optimum building locations. Different construction standards should be developed for different ventilation potential and UHI intensity levels. For strong heat island areas, land areas should be reserved to serve as cold sources.展开更多
Recent studies by the Hong Kong Observatory show that the urban centre of Hong Kong has considerable Urban Heat Island (UHI) effect that arises from the different thermal properties between urban and the surrounding...Recent studies by the Hong Kong Observatory show that the urban centre of Hong Kong has considerable Urban Heat Island (UHI) effect that arises from the different thermal properties between urban and the surrounding rural areas. The studies have also shown that the urban-rural temperature difference or UHI intensity in the urban centre of Hong Kong can be greater than 10℃. However, the characteristics of UHI in Hong Kong would not be unique were it not for its complex topography and the significant spatial variation in the degree of urbanization within the territory. Making use of the extensive spatial coverage of the automatic weather stations operated by the Observatory, this study attempts to document the spatial variation of the characteristics of UHI effect in Hong Kong in summer and winter through cases studies. Cases in summer and winter with meteorological conditions typical for high UHI effect (that is, clear sky, light wind and stable atmospheric condition) are selected for the study. The characteristics of UHI effect in terms of the daytime warming rates, nocturnal cooling rates and diurnal temperature ranges at the selected automatic weather stations are analysed. The territory of Hong Kong is then classified into different categories according to the identified characteristics with a view to portraying the spatial morphology of UHI effect in Hong Kong.展开更多
It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction be...It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction between urban parks and their urban surroundings, this paper takes the Temple of Heaven Park (THP) as an example of a park station and focuses on analyzing the differences with a nearby urban station.THP is located in the center of Beijing, and the nearest urban station is Tian An Men. It is interesting that the cooling effect of THP reaches a peak and remains stable when its city background urban heat island (UHI) varies within a given range, but becomes unstable when the UHI goes beyond the range. This is called an enhanced cooling effect in this paper. As a result, the UHi intensities (UHIIs) are calculated in order to comprehend the role of the park cooling effect in the urban heating characteristics of Beijing. By comparison with five other park-district pairs, this paper attempts to identify the causes of the enhanced cooling effect. It is found that six park-district pairs consistently demonstrate a persistently stronger cooling rate during the night, and that the water coverage might be a key factor in enhancing the park cooling effect. Based on further investigation of the influence of surrounding UHIs on the park cooling effect, it is found that the UHII differences in park-district pairs show quasi-linear changes within a given range as the UHli of the surrounding district increases.展开更多
文摘An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.
基金sponsored by Beijing Municipal Science and Technology Project(Z131100001113026)the Program of the Research and Innovation Team on Urban Climate Assessment of Beijing Meteorological Bureau,Climate Change Special Foundation of China Meteorology Administration(CCSF201506)+1 种基金Science and technology project of Beijing Meteorological Bureau(BMBKJ201402002)National Natural Science Foundation of China(71473146)
文摘In contrast to the input perspective for evaluating planning metrics, this research takes the climatic environmental output effects as the starting point for assessing ecological city construction. Based on approaches such as observation data analysis, meteorological model simulation, and remote sensing, a set of climatic environmental performance assessment methods is developed and established. These methods mainly focus on surface ventilation assessment and urban thermal environment assessment. With the Yanqi Lake ecological development demonstration area located in Huairou district, Beijing as an example, the assessment of the local climatic environment before and after the construction are conducted, and relevant policy suggestions for urban planning and construction are presented. The results show that after development, the ventilation capacity will decrease overall and the ventilation potential index will decrease from 0.53 to 0.44. While this is not a large reduction, and is still at a favorable level, the ventilation potential in some local areas will markedly decrease. Furthermore, the thermal environment will become poorer to some extent; the urban heat island(UHI) area and intensity will increase compared with the current situation;continuous heat islands may occur in local areas; the UHI potential index of the core area will rise from 0.0878 to 0.1217(still a favorable level).Therefore, urban surfaces should be carefully developed and arranged during planning. It is suggested that the negative impacts of large areas of urban construction on the local climatic environment in the Yanqi Lake could be mitigated by 1) strengthening the airflow by introducing fresh,cold, northwesterly air via constructed ventilation corridors, 2) increasing the number of ecological cold sources, particularly for water bodies and green belts to prevent the UHI in the southern region of Yanqi Lake from becoming linked with each other, and 3) considering a pre-program before sub-domain and building planning to obtain optimum building locations. Different construction standards should be developed for different ventilation potential and UHI intensity levels. For strong heat island areas, land areas should be reserved to serve as cold sources.
文摘Recent studies by the Hong Kong Observatory show that the urban centre of Hong Kong has considerable Urban Heat Island (UHI) effect that arises from the different thermal properties between urban and the surrounding rural areas. The studies have also shown that the urban-rural temperature difference or UHI intensity in the urban centre of Hong Kong can be greater than 10℃. However, the characteristics of UHI in Hong Kong would not be unique were it not for its complex topography and the significant spatial variation in the degree of urbanization within the territory. Making use of the extensive spatial coverage of the automatic weather stations operated by the Observatory, this study attempts to document the spatial variation of the characteristics of UHI effect in Hong Kong in summer and winter through cases studies. Cases in summer and winter with meteorological conditions typical for high UHI effect (that is, clear sky, light wind and stable atmospheric condition) are selected for the study. The characteristics of UHI effect in terms of the daytime warming rates, nocturnal cooling rates and diurnal temperature ranges at the selected automatic weather stations are analysed. The territory of Hong Kong is then classified into different categories according to the identified characteristics with a view to portraying the spatial morphology of UHI effect in Hong Kong.
基金supported by the National Natural Science Foundation of China[grant number 41375069]National Basic Research Program of China[grant number 2012CB957804]Young Talent Programming of China Meteorological Administration
文摘It is claimed that open spaces in cities, such as parks, have an urban cooling effect. However, the relationship between urban parks and adjacent districts is still not explicit. In order to clarify the interaction between urban parks and their urban surroundings, this paper takes the Temple of Heaven Park (THP) as an example of a park station and focuses on analyzing the differences with a nearby urban station.THP is located in the center of Beijing, and the nearest urban station is Tian An Men. It is interesting that the cooling effect of THP reaches a peak and remains stable when its city background urban heat island (UHI) varies within a given range, but becomes unstable when the UHI goes beyond the range. This is called an enhanced cooling effect in this paper. As a result, the UHi intensities (UHIIs) are calculated in order to comprehend the role of the park cooling effect in the urban heating characteristics of Beijing. By comparison with five other park-district pairs, this paper attempts to identify the causes of the enhanced cooling effect. It is found that six park-district pairs consistently demonstrate a persistently stronger cooling rate during the night, and that the water coverage might be a key factor in enhancing the park cooling effect. Based on further investigation of the influence of surrounding UHIs on the park cooling effect, it is found that the UHII differences in park-district pairs show quasi-linear changes within a given range as the UHli of the surrounding district increases.