The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different fie...The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different field strengths using a short high-voltage pulseapparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affectingit. It was found that Wien effect was much stronger in suspensions with a clay content of 30 gkg^(-1) from the soils equilibrated with a 1 X 10^(-4) KNO_3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., theWien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 gkg^(-1)) equilibrated with different nitrate solutions of a concentration of 1 X 10^(-4)/z molL^(-1), where z is the valence, varied with the type of nitrates, being lowest for NaNO_3 (47 kVcm^(-1)) and highest for Ca(NO_3)_2 (98 kV cm^(-1)). At high field strengths (larger than 130 kVcm^(-1)), the relative conductivities of yellow-brown soil suspensions containing different nitratesdiminished in the order: NaNO_3 > KNO_3 > Mg(NO_3)_2 > Zn(NO_3)_2 > Ca(NO_3)_2. The rates andintensities of the Wien effect in the suspensions of the three soils equilibrated with 5 X 10^(-5)mol L^(-1) Ca(NO_3)_2 solution were in the order of the yellow-brown soil > the latosol > the blacksoil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg )equilibrated with KNO_3 solutions of various concentrations clearly demonstrated that the moredilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensionsat high field strengths. The results for yellow-brown soil suspensions with different clayconcentrations indicated that as the clay concentration increased, the low field electricalconductivity, EC_0, also increased, but the TFS decreased, and the Wien effect increased.展开更多
Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(...Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(QPD)with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory(QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase(decrease) firstly and then at lower(higher) temperature regions. They are decreasing functions of the electric field strength.展开更多
基金Project(Nos.49771046 and 49831005)supported by the National Natural Science Foundation of China.
文摘The electrical conductivity of suspensions and their supernatants from theelectrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated withnitrate solutions were determined at different field strengths using a short high-voltage pulseapparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affectingit. It was found that Wien effect was much stronger in suspensions with a clay content of 30 gkg^(-1) from the soils equilibrated with a 1 X 10^(-4) KNO_3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., theWien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 gkg^(-1)) equilibrated with different nitrate solutions of a concentration of 1 X 10^(-4)/z molL^(-1), where z is the valence, varied with the type of nitrates, being lowest for NaNO_3 (47 kVcm^(-1)) and highest for Ca(NO_3)_2 (98 kV cm^(-1)). At high field strengths (larger than 130 kVcm^(-1)), the relative conductivities of yellow-brown soil suspensions containing different nitratesdiminished in the order: NaNO_3 > KNO_3 > Mg(NO_3)_2 > Zn(NO_3)_2 > Ca(NO_3)_2. The rates andintensities of the Wien effect in the suspensions of the three soils equilibrated with 5 X 10^(-5)mol L^(-1) Ca(NO_3)_2 solution were in the order of the yellow-brown soil > the latosol > the blacksoil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg )equilibrated with KNO_3 solutions of various concentrations clearly demonstrated that the moredilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensionsat high field strengths. The results for yellow-brown soil suspensions with different clayconcentrations indicated that as the clay concentration increased, the low field electricalconductivity, EC_0, also increased, but the TFS decreased, and the Wien effect increased.
基金Supported by the National Natural Science Foundation of China under Grant No.11464033
文摘Employing variational method of Pekar type(VMPT), this paper investigates the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled polaron in the Cs I quantum pseudodot(QPD)with electric field. The temperature effects on the strong-coupling polaron in electric field are calculated by using the quantum statistical theory(QST). The results from the present investigation show that the FESE, excitation energy and transition frequency increase(decrease) firstly and then at lower(higher) temperature regions. They are decreasing functions of the electric field strength.