The seismic activities on the Earth can produce a disturbance of the electromagnetic field and particles in the ionosphere. The search coil magnetometer(SCM) mounted on China Seismo-Electromagnetic satellite(CSES) is ...The seismic activities on the Earth can produce a disturbance of the electromagnetic field and particles in the ionosphere. The search coil magnetometer(SCM) mounted on China Seismo-Electromagnetic satellite(CSES) is designed to measure the magnetic field fluctuation of low frequency electromagnetic waves in the frequency range of 10 Hz–20 k Hz. The SCM comprises a three-axis search coil sensor mounted on a 4.5 m boom and an electronic box inside satellite module. The sampling rate of the SCM is 51.2 k Hz and the time resolution of the power spectrum density(PSD) is 2 s. The frequency resolution is 12.5 Hz.There are three operation modes: survey, detailed survey and calibration. In the survey mode, the SCM can provide a PSD in the whole frequency range of 10 Hz–20 k Hz and wave forms in the low frequency range below 2 k Hz while in the detailed survey mode the SCM can provide both PSD and wave forms in the whole frequency range of 10 Hz–20 k Hz. The sensitivity of the SCM instrument is 5.0×10^(-4) n T Hz^(-1/2) at 10 Hz, 5.0×10^(–5) n T Hz^(-1/2) at 200 Hz, 3.4×10^(-5) n T Hz^(-1/2) at 2 k Hz and 1.1×10^(-4) n T Hz^(-1/2) at 20 k Hz. The telemetry rate is ~0.85 Mbps in the survey mode and ~3.0 Mbps in the detailed survey mode. The phase difference between three axes can be made generally with a precision of less than 1.0°. The dynamic range of the SCM instrument is over 100 d B. The orthogonality of three mechanical axes of search coil senor is better than 0.13°. The performance of SCM can satisfy the requirement of scientific objectives of CSES mission.展开更多
Concrete forms of resonant response (ER) for a strong electromagnetic (EM) wave beam (photon flux) propagating in a static magnetic field to a standing gravitational wave (gravitons) are given, and the corresponding p...Concrete forms of resonant response (ER) for a strong electromagnetic (EM) wave beam (photon flux) propagating in a static magnetic field to a standing gravitational wave (gravitons) are given, and the corresponding perturbation solutions and resonant conditions are obtained. It is found that perturbed EM fields (PEMFs) contain three new components with frequencies Io,* w,l and ωPg respectively. In the case of ωe?ωg, the PEMFs are manifested as the EM wave beams with frequency ωe and a standing EM wave with ωg. The former and the background EM wave beam (BE-MWB) have the same propagating direction, while in the case of ωg?ωe, all PEMFs are expressed as the standing EM waves with frequency ωg. The resonant response occurs in two cases of ωe = 1/2 ωg andωe, = ωg only. Then not only the first order perturbed energy fluxes (PEFs) propagating in the same and opposite directions of the BEMWB can be generated, but also radial and tangential PEFs which are perpendicular to the above directions can be produced. This effect might provide a new way for the EM detection of the gravitational waves (GWs). Moreover, the possible schemes of displaying perturbed effects induced by the standing GW withh = 10-33 - 10-35 and λg = 0.1 m at the level of the single photon avalanche and in a typicla laboratory dimension are reviewed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41431071)
文摘The seismic activities on the Earth can produce a disturbance of the electromagnetic field and particles in the ionosphere. The search coil magnetometer(SCM) mounted on China Seismo-Electromagnetic satellite(CSES) is designed to measure the magnetic field fluctuation of low frequency electromagnetic waves in the frequency range of 10 Hz–20 k Hz. The SCM comprises a three-axis search coil sensor mounted on a 4.5 m boom and an electronic box inside satellite module. The sampling rate of the SCM is 51.2 k Hz and the time resolution of the power spectrum density(PSD) is 2 s. The frequency resolution is 12.5 Hz.There are three operation modes: survey, detailed survey and calibration. In the survey mode, the SCM can provide a PSD in the whole frequency range of 10 Hz–20 k Hz and wave forms in the low frequency range below 2 k Hz while in the detailed survey mode the SCM can provide both PSD and wave forms in the whole frequency range of 10 Hz–20 k Hz. The sensitivity of the SCM instrument is 5.0×10^(-4) n T Hz^(-1/2) at 10 Hz, 5.0×10^(–5) n T Hz^(-1/2) at 200 Hz, 3.4×10^(-5) n T Hz^(-1/2) at 2 k Hz and 1.1×10^(-4) n T Hz^(-1/2) at 20 k Hz. The telemetry rate is ~0.85 Mbps in the survey mode and ~3.0 Mbps in the detailed survey mode. The phase difference between three axes can be made generally with a precision of less than 1.0°. The dynamic range of the SCM instrument is over 100 d B. The orthogonality of three mechanical axes of search coil senor is better than 0.13°. The performance of SCM can satisfy the requirement of scientific objectives of CSES mission.
基金We thank Profs. V. N. Rudenko and M. V. Sazhin for their helpful discussions and suggestions, colleagues of Sternberg Astronomical Institute of Moscow University for their hospitality, and Prof. Luo Jun of Huazhong University of Science and Technology fo
文摘Concrete forms of resonant response (ER) for a strong electromagnetic (EM) wave beam (photon flux) propagating in a static magnetic field to a standing gravitational wave (gravitons) are given, and the corresponding perturbation solutions and resonant conditions are obtained. It is found that perturbed EM fields (PEMFs) contain three new components with frequencies Io,* w,l and ωPg respectively. In the case of ωe?ωg, the PEMFs are manifested as the EM wave beams with frequency ωe and a standing EM wave with ωg. The former and the background EM wave beam (BE-MWB) have the same propagating direction, while in the case of ωg?ωe, all PEMFs are expressed as the standing EM waves with frequency ωg. The resonant response occurs in two cases of ωe = 1/2 ωg andωe, = ωg only. Then not only the first order perturbed energy fluxes (PEFs) propagating in the same and opposite directions of the BEMWB can be generated, but also radial and tangential PEFs which are perpendicular to the above directions can be produced. This effect might provide a new way for the EM detection of the gravitational waves (GWs). Moreover, the possible schemes of displaying perturbed effects induced by the standing GW withh = 10-33 - 10-35 and λg = 0.1 m at the level of the single photon avalanche and in a typicla laboratory dimension are reviewed.