A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was use...A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.展开更多
this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al....this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.展开更多
In this paper, a strongly coupled diffusive predator-prey system with a modified Leslie- Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotica...In this paper, a strongly coupled diffusive predator-prey system with a modified Leslie- Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create stationary patterns.展开更多
For technological reasons many high-performance solid rocket motors are made from segmented propellant grains with non-uniform port geometry. In this paper parametric studies have been carried out to examine the geome...For technological reasons many high-performance solid rocket motors are made from segmented propellant grains with non-uniform port geometry. In this paper parametric studies have been carried out to examine the geometric dependence of transient flow features in solid rockets with non-uniform ports. Numerical computations have been carried out in an inert simulator of solid propellant rocket motor with the aid of a standard k-ω turbulence model. It was seen that the damping of the temperature fluctuation is faster in solid rocket with convergent port than with divergent port geometry. We inferred that the damping of the flow fluctuations using the port geometry is a meaningful objective for the suppression and control of the instability and/or pressure/thrust oscillations during the starting transient of solid rockets.展开更多
基金Projects(50490274 , 10472134 , 50404010) supported by the National Natural Science Foundation of China project(2002CB412703) supported by the Key Fundamental Research and Development Programof China
文摘A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.
基金Supported in part by NSFC(No.11961011)Guangxi Science and Technology Base and Talents Special Project(No.2021AC06001).
文摘this paper,we propose a class of smoothing-regularization methods for solving the mathematical programming with vanishing constraints.These methods include the smoothing-regularization method proposed by Kanzow et al.in[Comput.Optim.Appl.,2013,55(3):733-767]as a special case.Under the weaker conditions than the ones that have been used by Kanzow et al.in 2013,we prove that the Mangasarian-Fromovitz constraint qualification holds at the feasible points of smoothing-regularization problem.We also analyze that the convergence behavior of the proposed smoothing-regularization method under mild conditions,i.e.,any accumulation point of the stationary point sequence for the smoothing-regularization problem is a strong stationary point.Finally,numerical experiments are given to show the efficiency of the proposed methods.
文摘In this paper, a strongly coupled diffusive predator-prey system with a modified Leslie- Gower term is considered. We will show that under certain hypotheses, even though the unique positive equilibrium is asymptotically stable for the dynamics with diffusion, Turing instability can produce due to the presence of the cross-diffusion. In particular, we establish the existence of non-constant positive steady states of this system. The results indicate that cross-diffusion can create stationary patterns.
文摘For technological reasons many high-performance solid rocket motors are made from segmented propellant grains with non-uniform port geometry. In this paper parametric studies have been carried out to examine the geometric dependence of transient flow features in solid rockets with non-uniform ports. Numerical computations have been carried out in an inert simulator of solid propellant rocket motor with the aid of a standard k-ω turbulence model. It was seen that the damping of the temperature fluctuation is faster in solid rocket with convergent port than with divergent port geometry. We inferred that the damping of the flow fluctuations using the port geometry is a meaningful objective for the suppression and control of the instability and/or pressure/thrust oscillations during the starting transient of solid rockets.