The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exh...The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exhibits equiaxed grain structures with obvious composition segregation.However,with the addition of B element,the alloys exhibit dendrite structures.Inside the dendrites,spinodal decomposition structure can be clearly observed.With the addition of B element,the crystal structures change from(B2 + BCC) to(B2 + BCC + FCC) structures,and the hardness firstly increases from HV 486.7 to HV 502.4,then declines to HV 460.7(x ≥ 0.02).The compressive fracture strength firstly shows a trend of increasing,and then declining(x ≥ 0.08).The coercive forces and the specific saturation magnetizations of the alloys decrease as B addition contents increase,the decreasing coercive forces show a better soft magnetic behavior.展开更多
Based on the Mg58.5Cu30.5Y11 alloy, 10% Ti, 10% Be and 10% Ti70Be30 (mole fraction) were respectively added to the alloy and samples with a diameter of 3 mm were fabricated by conventional Cu-mold casting method. Th...Based on the Mg58.5Cu30.5Y11 alloy, 10% Ti, 10% Be and 10% Ti70Be30 (mole fraction) were respectively added to the alloy and samples with a diameter of 3 mm were fabricated by conventional Cu-mold casting method. The phase constituent, thermal stability and microstructure of the alloys were investigated by using X-ray diffraction, differential scanning calorimetry and scanning electron microscopy, respectively. The effects of alloying elements Ti and Be on the microstructure and mechanical properties of Mg58.sCu3o.sYll alloy were discussed. The results show that CuTi phase is distributed in (Mg0.585Cu0.305Y0.11)90Ti10 and (Mg58.5Cu30.5Y11)90(Ti0.7Be0.3)10 alloys, while CuYBe glassy phase containing CuY crystals is embedded in the matrix of (Mg58.5Cu30.5Y11)90Be10 alloy. Under uniaxial compressive loading, the largest compressive fracture strengths for (Mg58.5Cu30.5Y11)90Ti10, (Mg58.5Cu30.5Y11)90Be10 and (Mg58.5Cu30.5Y11)90(Ti0.7Be0.3)10 alloys are 797.6, 952.6 and 1007.8 MPa, respectively, and the strengths are increased by about 17%, 40% and 48% compared with Mg58.5Cu30.5Y11 alloy. The strength reliability for the three alloys is much improved according to the strength distribution region of 10 samples of each alloy.展开更多
Nutrition is an important factor for the growth and development of plants. Among the main nutritional elements, there are nitrogen (N) and calcium (Ca). The N comes from two forms of inorganic ions, ammonium (NH...Nutrition is an important factor for the growth and development of plants. Among the main nutritional elements, there are nitrogen (N) and calcium (Ca). The N comes from two forms of inorganic ions, ammonium (NH4+) and nitrate (NO3) whose functions in the plant are the increase in leaf area and improving the succulence of many crops, among other essential physiological processes. Both the deficit and excess NO3- have a negative impact on plants increasing susceptibility to insect pests and pathogens, while Ca as divalent ion absorbed Ca2+ plays an important role in control of physiological disorders and the resistance of plants to diseases to increase the mechanical strength. The N and Ca have a close relationship in the nutritional role of the plant, because the Ca absorption acting nitrates, so that a proper balance affects plants better growth and higher strength.展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum al...The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.展开更多
Atmospheric aerosol samples collected in Beijing during 17-21 September 2004 were analyzed using the proton-induced X-ray emissions (PIXE) method,yielding concentrations of 20 elements.Analyzing the aerosol element si...Atmospheric aerosol samples collected in Beijing during 17-21 September 2004 were analyzed using the proton-induced X-ray emissions (PIXE) method,yielding concentrations of 20 elements.Analyzing the aerosol element size-spectrum distribution,enrichment factor (EF) and source over Beijing showed that under strong wind weather conditions,there were double peak distributions in the element size-spectra of Cu,S,K,Mn,As,Br,and Pb:one in fine mode and another in coarse mode.The peak in fine mode resulted from local emissions related to human activities,while the peak in coarse mode was caused by long range transport.The EF values of elements Ni,Cu,Zn,As,Se,Br,and Pb were relatively high,suggesting an evident characteristic polluted by regional aerosol.Results from factor analysis indicated that soil dust,coal-burning,industry and vehicle emissions contributed considerably to the autumn aerosol pollution in Beijing.展开更多
The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ...The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.展开更多
Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch ...Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.展开更多
There is great interest in the use of natural fibers as reinforcement to obtain new construction materials due to its low cost, high availability and reduced energy consumption for its production. This paper evaluates...There is great interest in the use of natural fibers as reinforcement to obtain new construction materials due to its low cost, high availability and reduced energy consumption for its production. This paper evaluates the incorporation of sisal fibers of 20 mm and 40 mm in length and volume fraction of 0.5% and 1% for concrete masonry structural blocks, and determines the use of these units to build prisms and mini-walls. Laboratory tests were carried out to characterize the physical of blocks and mortar, in addition to the axial compression tests of the units, prisms, and mini-walls. The sisal had low apparent density and high water absorption, which is a common feature of such material due to the high incidence of permeable pores. The physical properties of the blocks with and without addition complied with the standard requirements established to validate their use. The obtained results showed that the fiber-reinforced mini-walls obtained values very close to or even higher than those obtained for the mini-walls without fibers, demonstrating better performance than the blocks and prisms.展开更多
It is generally accepted that the interaction between a bridge and its abutment's backfill soil is highly nonlinear, especially under a strong earthquake loading that contains a velocity pulse. For bridges with skew ...It is generally accepted that the interaction between a bridge and its abutment's backfill soil is highly nonlinear, especially under a strong earthquake loading that contains a velocity pulse. For bridges with skew abutments, the superstructure-abutment interaction can dominate the overall bridge performance. This study puts forth a new approach for predicting the lateral capacity of a skew abutment using verified high-fidelity three-dimensional continuum finite element (FE) models. The core idea is that the lateral capacity of a straight abutment is bounded from above and below by that of the abutment of a skew bridge that has the same deck-width, and that of another skew bridge (with the same angle) that has the same backwall length as the original/straight bridge, respectively. This postulation is then used in reverse to estimate the lateral capacity of a skew abutment, given the capacity of a straight but otherwise identical one with an arbitrary length. In prior research, the latter information had already been obtained in closed-form expressions that use physical parameters, such as backfill cohesion, internal friction angle and density, backwall height, and backwall-backfill friction angle. The approach presented here is constrained by the assumption that bridge deck will not rotate during loading. While this assumption is generally violated in a strong earthquake--because a skew bridge will tend to rotate, especially if its in-plane torsional rigidity is low, the model presented does serve as an anchor for parameterizing more advanced (e.g., macro-element plasticity) models that allow rotation, and also as fully parametric lateral response models for torsionally stiff (ile., multi-span, multi-bent) skew bridges.展开更多
With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. F...With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. FEM strength reduction method is used in analyzing slope stability of a wharf in Chongqing, and its accuracy is verified by comparing the acquired results with the computation of traditional limit equilibrium method. On this basis, the influences of reservoir water level variation, overload and backfill material behind the retaining wall, and soil share strength of wharf slope on slippery stratum are analyzed. Analysis shows that, there' s a most adverse water level in wharf slope, and the engineering proposals with a certain practical significance such as improve the drainage behind retaining wall, controll overload and improve the strength of backfill soil and subsoil are suggested.展开更多
The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy w...The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.展开更多
Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. ...Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. Following the layerwise theory, a variable kinematic model that incorporates mechanics and thermal conditions is also presented. The new element has a field of displacement compatible with the cylindrical shell element or plate and it can be used as a rigid element for this structural element.ln the laminate model construction, adjacent layers are arranged as bonded layers. The layer has a unique constant thickness that can be different to each layer. The fiber reinforced is used and the fibers in a laminate may be oriented arbitrarily. The shear stress is adopted equal to zero because the thin thickness, on the other hand, the normal stress is maintained in order to ensure the compatibility of stress in material. The previously authors of this methods neglect the implications of thermal effects on cylindrical shells structures. Thermal effects become important when the structure has to operate in either extremely hot or cold temperature environments. These extreme conditions may severely affect the response of structure in two distinct ways: (1) induction of thermal stresses due to differences in the coefficients of thermal expansion between the various composite plies and layers and (2) temperature dependence of the elastic properties. Only a limited amount of work has been reported concerning this topic. All in all, the main contribution of this work is the consideration of this kinematic for cylindrical shells that incorporate mechanics and thermal conditions. In addition, numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of cylindrical shells with these characteristics.展开更多
Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as p...Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as previously proposed. The Jingju sy- enogranites are characterized by relatively high K2O and FeO*, and low MgO. They have high concentrations of large ion lithophile elements (LIL) and LREE, such as K, Th, La, and Ce, but are depleted in high field strength elements (HFSE) such as Nb, Ta, and Ti. Their 104Ga/A1 ratios and (Zr+Nb+Ce+Y) contents are also high. These characteristics are similar to those of A-type granites. The syenogranites have high Isr (0.7179-0.7203), low eNa(t) (from --14.2 to --13.2), and relatively old T2DM ages, similar to those of the ancient metamorphic basement in the Cathaysia Block. It is suggested that the Jingju syenogranites were formed by partial melting of the Cathaysia basement rocks during tectonic extension. This identification of Indosinian A-type granite in Jingju has significant implications for understanding the early Mesozoic tectonic evolution of South China.展开更多
Orogenic peridotites in the Dabie-Sulu orogenic belt are commonly subdivided into‘crustal’type and‘mantle’type.They exhibit distinct mineral textures,metamorphic evolution,and whole-rock and mineral compositions.M...Orogenic peridotites in the Dabie-Sulu orogenic belt are commonly subdivided into‘crustal’type and‘mantle’type.They exhibit distinct mineral textures,metamorphic evolution,and whole-rock and mineral compositions.Most‘mantle’type peridotites originated from the subcontinental lithospheric mantle(SCLM)of the North China Craton and thus provide direct evidence of crust-mantle interactions in the continental subduction channel.In garnet peridotites,both garnet and Cr-spinel can be equilibrated at peak pressure conditions.Their stabilities are mainly controlled by the refertilized degree of whole-rock;therefore,spinel composition cannot be used to discriminate the partial melting degree of orogenic peridotites.Refractory mantle-derived dunites contain the textures of low Mg and high Ca olivine veins that crosscut orthopyroxene porphyroblasts,which is considered as evidence for silica-undersaturated melt-rock reactions.Such reactions occurring before subduction may potentially affect Re-Os isotopic compositions.Rutile,Ti-clinohumite and zircon in mantle-derived peridotites or pyroxenites provide direct mineralogical evidence for the transport of high field strength elements(HFSEs)from the subducted crust into the mantle wedge.Based on detailed in situ element and isotope analyses,we can constrain the source of metasomatic agents,the metasomatic time and the process of mass transfer.The mantle wedge above continental subduction zones has a wide range of oxygen fugacity values(FMQ=?5.50–1.75),showing a roughly negative correlation with the subducted depths.However,the calculated results of oxygen fugacity are significantly affected by mineral assemblages,P-T conditions and dehydrogenation-oxidation of nominally anhydrous mantle olivine during exhumation.Although significant progress has been made in the study of orogenic peridotites in the Dabie-Sulu orogenic belt,many critical questions remain.With new approaches and advanced technologic applications,additional knowledge of the phase relation in the peridotite-pyroxenite complex system,the mantle geodynamic process before continental subduction,the effects of crustal metasomatism on chemical composition,the oxygen fugacity,and the physical properties of the mantle wedge is anticipated.展开更多
Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading a...Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.展开更多
The discrete variational (DV) and DMol methods within the framework of density functional theory are used to study the effect of alloying element Nb on Fe γ phase.The impurity formation energy in bulk and segregation...The discrete variational (DV) and DMol methods within the framework of density functional theory are used to study the effect of alloying element Nb on Fe γ phase.The impurity formation energy in bulk and segregation energies at grain boundary and free surface are calculated.The results show that Nb prefers to segregate at grain boundary.The difference in segregation energies between the grain boundary and the corresponding free surface is -0.39 eV for solute Nb.According to Rice-Wang model,it can be predicted that Nb can enhance grain boundary cohesion.The calculated results of interatomic energy and charge density show that charge would be redistributed,and the bonds across grain boundary are strengthened by the substitution of Nb for Fe.As a result,it is difficult for the grain boundary to move.Thus the dragging effect of Nb is explained electronically.展开更多
In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness e...In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness elements was attached to the wall surface to regulate the near-wall low-speed streaky structures.With both qualitative visualization and quantitative measurement,we found that the regularization only occurs in the region below the height of the roughness elements.Statistical analysis on the probability distribution of the streak spanwise spacing showed that the mean spanwise streak spacing is dominated by the roughness elements;however,the latter's effect is in competition with the intrinsic streak generation mechanisms of smooth wall turbulence.Below the top of the roughness elements,local streamwise turbulent fluctuation intensity can be reduced by about 10%.We used POD analysis to depict such regularization effect in terms of near-wall structure modulation.We further found that if the spanwise spacing of roughness elements increased to be larger than the mean streak spacing in the smooth wall turbulence,there is no streak-regularization effect in the buffer region,so that the near-wall streamwise turbulent fluctuation intensity doesn't reduce.展开更多
基金Projects(51134013,51104029,51471044)supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(LZ2014007)supported by the Key Laboratory of Basic Research Projects of Liaoning Province Department of Education,ChinaProject(2014028013)supported by the Natural Science Foundation of Liaoning Province,China
文摘The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exhibits equiaxed grain structures with obvious composition segregation.However,with the addition of B element,the alloys exhibit dendrite structures.Inside the dendrites,spinodal decomposition structure can be clearly observed.With the addition of B element,the crystal structures change from(B2 + BCC) to(B2 + BCC + FCC) structures,and the hardness firstly increases from HV 486.7 to HV 502.4,then declines to HV 460.7(x ≥ 0.02).The compressive fracture strength firstly shows a trend of increasing,and then declining(x ≥ 0.08).The coercive forces and the specific saturation magnetizations of the alloys decrease as B addition contents increase,the decreasing coercive forces show a better soft magnetic behavior.
基金Project(2011CB606301)supported by the National Basic Research Program of China
文摘Based on the Mg58.5Cu30.5Y11 alloy, 10% Ti, 10% Be and 10% Ti70Be30 (mole fraction) were respectively added to the alloy and samples with a diameter of 3 mm were fabricated by conventional Cu-mold casting method. The phase constituent, thermal stability and microstructure of the alloys were investigated by using X-ray diffraction, differential scanning calorimetry and scanning electron microscopy, respectively. The effects of alloying elements Ti and Be on the microstructure and mechanical properties of Mg58.sCu3o.sYll alloy were discussed. The results show that CuTi phase is distributed in (Mg0.585Cu0.305Y0.11)90Ti10 and (Mg58.5Cu30.5Y11)90(Ti0.7Be0.3)10 alloys, while CuYBe glassy phase containing CuY crystals is embedded in the matrix of (Mg58.5Cu30.5Y11)90Be10 alloy. Under uniaxial compressive loading, the largest compressive fracture strengths for (Mg58.5Cu30.5Y11)90Ti10, (Mg58.5Cu30.5Y11)90Be10 and (Mg58.5Cu30.5Y11)90(Ti0.7Be0.3)10 alloys are 797.6, 952.6 and 1007.8 MPa, respectively, and the strengths are increased by about 17%, 40% and 48% compared with Mg58.5Cu30.5Y11 alloy. The strength reliability for the three alloys is much improved according to the strength distribution region of 10 samples of each alloy.
文摘Nutrition is an important factor for the growth and development of plants. Among the main nutritional elements, there are nitrogen (N) and calcium (Ca). The N comes from two forms of inorganic ions, ammonium (NH4+) and nitrate (NO3) whose functions in the plant are the increase in leaf area and improving the succulence of many crops, among other essential physiological processes. Both the deficit and excess NO3- have a negative impact on plants increasing susceptibility to insect pests and pathogens, while Ca as divalent ion absorbed Ca2+ plays an important role in control of physiological disorders and the resistance of plants to diseases to increase the mechanical strength. The N and Ca have a close relationship in the nutritional role of the plant, because the Ca absorption acting nitrates, so that a proper balance affects plants better growth and higher strength.
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
基金Project(51775297)supported by the National Natural Science Foundation of ChinaProject(2015M580093)supported by the China Postdoctoral Science Foundation
文摘The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.
基金supported by the National Basic Research Program of China (No. 2010CB428503)Project of the Beijing Municipal Financial Bureau (No. PXM2008_178305_ 06995)
文摘Atmospheric aerosol samples collected in Beijing during 17-21 September 2004 were analyzed using the proton-induced X-ray emissions (PIXE) method,yielding concentrations of 20 elements.Analyzing the aerosol element size-spectrum distribution,enrichment factor (EF) and source over Beijing showed that under strong wind weather conditions,there were double peak distributions in the element size-spectra of Cu,S,K,Mn,As,Br,and Pb:one in fine mode and another in coarse mode.The peak in fine mode resulted from local emissions related to human activities,while the peak in coarse mode was caused by long range transport.The EF values of elements Ni,Cu,Zn,As,Se,Br,and Pb were relatively high,suggesting an evident characteristic polluted by regional aerosol.Results from factor analysis indicated that soil dust,coal-burning,industry and vehicle emissions contributed considerably to the autumn aerosol pollution in Beijing.
基金supported by General Research Funds (Projects#115108 and#114809) from the Research Grants Council of the Hong Kong SAR,China
文摘The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.
基金Supported by China Postdoctoral Science Foundation(No. 20110490380 and No. 20110490383)Dongfang Turbine Co, Ltd (No. 2011GZ011)State Key Laboratory of Tribology, Tsinghua University (No. SKLT10A01)
文摘Scratch test and friction test were performed to evaluate the internal and external interface behaviors of TiAISiN coating, respectively. The critical compressive and shearing stress of coating failure during scratch test were calculated and the values are 30.84 MPa and 4.98 MPa respectively. The average friction coefficients of TiAISiN coat- ing against 2Crl2Ni4Mo3VNbN steel are 0.70 (sliding speed 50 m/rain), 0.63 (sliding speed 100 m/min), and 0.81 (sliding speed 150 m/min). The elements diffusion was analyzed by EDS. A1 and Si element of coating material dif- fuse to the steel disc, except Ti element. The oxidation decreases with the increase of sliding speed, but the adhesion increases with the increase of sliding speed. More A1 element diffuses to the steel disc at the high sliding speed, but the diffusion of Si element keeps almost constant at dlfferent sliding speeds.
文摘There is great interest in the use of natural fibers as reinforcement to obtain new construction materials due to its low cost, high availability and reduced energy consumption for its production. This paper evaluates the incorporation of sisal fibers of 20 mm and 40 mm in length and volume fraction of 0.5% and 1% for concrete masonry structural blocks, and determines the use of these units to build prisms and mini-walls. Laboratory tests were carried out to characterize the physical of blocks and mortar, in addition to the axial compression tests of the units, prisms, and mini-walls. The sisal had low apparent density and high water absorption, which is a common feature of such material due to the high incidence of permeable pores. The physical properties of the blocks with and without addition complied with the standard requirements established to validate their use. The obtained results showed that the fiber-reinforced mini-walls obtained values very close to or even higher than those obtained for the mini-walls without fibers, demonstrating better performance than the blocks and prisms.
文摘It is generally accepted that the interaction between a bridge and its abutment's backfill soil is highly nonlinear, especially under a strong earthquake loading that contains a velocity pulse. For bridges with skew abutments, the superstructure-abutment interaction can dominate the overall bridge performance. This study puts forth a new approach for predicting the lateral capacity of a skew abutment using verified high-fidelity three-dimensional continuum finite element (FE) models. The core idea is that the lateral capacity of a straight abutment is bounded from above and below by that of the abutment of a skew bridge that has the same deck-width, and that of another skew bridge (with the same angle) that has the same backwall length as the original/straight bridge, respectively. This postulation is then used in reverse to estimate the lateral capacity of a skew abutment, given the capacity of a straight but otherwise identical one with an arbitrary length. In prior research, the latter information had already been obtained in closed-form expressions that use physical parameters, such as backfill cohesion, internal friction angle and density, backwall height, and backwall-backfill friction angle. The approach presented here is constrained by the assumption that bridge deck will not rotate during loading. While this assumption is generally violated in a strong earthquake--because a skew bridge will tend to rotate, especially if its in-plane torsional rigidity is low, the model presented does serve as an anchor for parameterizing more advanced (e.g., macro-element plasticity) models that allow rotation, and also as fully parametric lateral response models for torsionally stiff (ile., multi-span, multi-bent) skew bridges.
文摘With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. FEM strength reduction method is used in analyzing slope stability of a wharf in Chongqing, and its accuracy is verified by comparing the acquired results with the computation of traditional limit equilibrium method. On this basis, the influences of reservoir water level variation, overload and backfill material behind the retaining wall, and soil share strength of wharf slope on slippery stratum are analyzed. Analysis shows that, there' s a most adverse water level in wharf slope, and the engineering proposals with a certain practical significance such as improve the drainage behind retaining wall, controll overload and improve the strength of backfill soil and subsoil are suggested.
基金Projects(51275198,51422503)supported by the National Natural Science Foundation of ChinaProject(2012YQ030075)supported by Special Funds for Development of National Major Scientific Instruments and Equipments,China+1 种基金Project(NECT-12-0238)supported by Program for New Century Excellent Talents in University,ChinaProject(20150520108JH)supported by Young Scientist Fund of Jilin Province of China
文摘The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.
文摘Thermal effects are incorporated into developed discrete layer mechanics for two-dimensional cylindrical shells structures. Finite element equations are developed according to layerwise theory of laminated structure. Following the layerwise theory, a variable kinematic model that incorporates mechanics and thermal conditions is also presented. The new element has a field of displacement compatible with the cylindrical shell element or plate and it can be used as a rigid element for this structural element.ln the laminate model construction, adjacent layers are arranged as bonded layers. The layer has a unique constant thickness that can be different to each layer. The fiber reinforced is used and the fibers in a laminate may be oriented arbitrarily. The shear stress is adopted equal to zero because the thin thickness, on the other hand, the normal stress is maintained in order to ensure the compatibility of stress in material. The previously authors of this methods neglect the implications of thermal effects on cylindrical shells structures. Thermal effects become important when the structure has to operate in either extremely hot or cold temperature environments. These extreme conditions may severely affect the response of structure in two distinct ways: (1) induction of thermal stresses due to differences in the coefficients of thermal expansion between the various composite plies and layers and (2) temperature dependence of the elastic properties. Only a limited amount of work has been reported concerning this topic. All in all, the main contribution of this work is the consideration of this kinematic for cylindrical shells that incorporate mechanics and thermal conditions. In addition, numerical results are presented to demonstrate the capability of the current formulation to represent the behavior of cylindrical shells with these characteristics.
基金supported by Ministry of Science and Technology of China (Grant No. 2007DFA21230)Natural Science Foundation of Hubei Province (Grant No. 2009CDA004)+2 种基金National Natural Science Foundation of China (Grant Nos. 40821061, 40334037)Ministry Education of China, State Administration of Foreign Expert Affairs of China (Grant No. B07039)Survey and Assessment of Geology and Mineral Resources (Grant No. B[2010]AMR01-17-05)
文摘Zircon LA-ICP-MS U-Pb dating of the Jingju syenogranites in the southwestern part of Zhejiang Province shows that these rocks were crystallized in the Late Triassic at 215±2 Ma, rather than in the Cretaceous as previously proposed. The Jingju sy- enogranites are characterized by relatively high K2O and FeO*, and low MgO. They have high concentrations of large ion lithophile elements (LIL) and LREE, such as K, Th, La, and Ce, but are depleted in high field strength elements (HFSE) such as Nb, Ta, and Ti. Their 104Ga/A1 ratios and (Zr+Nb+Ce+Y) contents are also high. These characteristics are similar to those of A-type granites. The syenogranites have high Isr (0.7179-0.7203), low eNa(t) (from --14.2 to --13.2), and relatively old T2DM ages, similar to those of the ancient metamorphic basement in the Cathaysia Block. It is suggested that the Jingju syenogranites were formed by partial melting of the Cathaysia basement rocks during tectonic extension. This identification of Indosinian A-type granite in Jingju has significant implications for understanding the early Mesozoic tectonic evolution of South China.
基金supported by the National Basic Research Program of China(Grant No.2015CB856103)the National Natural Science Foundation of China(Grant Nos.41090371&41372078)
文摘Orogenic peridotites in the Dabie-Sulu orogenic belt are commonly subdivided into‘crustal’type and‘mantle’type.They exhibit distinct mineral textures,metamorphic evolution,and whole-rock and mineral compositions.Most‘mantle’type peridotites originated from the subcontinental lithospheric mantle(SCLM)of the North China Craton and thus provide direct evidence of crust-mantle interactions in the continental subduction channel.In garnet peridotites,both garnet and Cr-spinel can be equilibrated at peak pressure conditions.Their stabilities are mainly controlled by the refertilized degree of whole-rock;therefore,spinel composition cannot be used to discriminate the partial melting degree of orogenic peridotites.Refractory mantle-derived dunites contain the textures of low Mg and high Ca olivine veins that crosscut orthopyroxene porphyroblasts,which is considered as evidence for silica-undersaturated melt-rock reactions.Such reactions occurring before subduction may potentially affect Re-Os isotopic compositions.Rutile,Ti-clinohumite and zircon in mantle-derived peridotites or pyroxenites provide direct mineralogical evidence for the transport of high field strength elements(HFSEs)from the subducted crust into the mantle wedge.Based on detailed in situ element and isotope analyses,we can constrain the source of metasomatic agents,the metasomatic time and the process of mass transfer.The mantle wedge above continental subduction zones has a wide range of oxygen fugacity values(FMQ=?5.50–1.75),showing a roughly negative correlation with the subducted depths.However,the calculated results of oxygen fugacity are significantly affected by mineral assemblages,P-T conditions and dehydrogenation-oxidation of nominally anhydrous mantle olivine during exhumation.Although significant progress has been made in the study of orogenic peridotites in the Dabie-Sulu orogenic belt,many critical questions remain.With new approaches and advanced technologic applications,additional knowledge of the phase relation in the peridotite-pyroxenite complex system,the mantle geodynamic process before continental subduction,the effects of crustal metasomatism on chemical composition,the oxygen fugacity,and the physical properties of the mantle wedge is anticipated.
基金supported by the National Natural Science Foundation of China(Grant Nos.51239006,91215301 and 51479098)
文摘Experimental tests show that static pre-loading has a significant effect on the dynamic strength of concrete.Based on meso-scale particle element model,numerical simulations of dynamic bending tests with pre-loading are performed.Complete stress–strain relationships are then obtained.Significant increase in dynamic strength is found when the pre-loadings are imposed within the elastic limit of concrete.However,when the imposition of pre-loadings reaches the plastic or softening range,dynamic strengths may gradually decrease along with the increase in pre-loadings.The distribution of energy components and the failure modes are discussed to explain the mechanisms of the phenomena.
基金This work was supported by 973 Project of China (No. G2000067102) the National Natural Science Foundation of China (Grant No. 59971041).
文摘The discrete variational (DV) and DMol methods within the framework of density functional theory are used to study the effect of alloying element Nb on Fe γ phase.The impurity formation energy in bulk and segregation energies at grain boundary and free surface are calculated.The results show that Nb prefers to segregate at grain boundary.The difference in segregation energies between the grain boundary and the corresponding free surface is -0.39 eV for solute Nb.According to Rice-Wang model,it can be predicted that Nb can enhance grain boundary cohesion.The calculated results of interatomic energy and charge density show that charge would be redistributed,and the bonds across grain boundary are strengthened by the substitution of Nb for Fe.As a result,it is difficult for the grain boundary to move.Thus the dragging effect of Nb is explained electronically.
基金supported by National Natural Science Foundation of China(Grant Nos.11490552 and 11372001)
文摘In the present paper,we present an investigation on the effect of roughness elements onto near-wall kinematics of a zeropressure-gradient turbulent boundary layer.An array of spanwisely-aligned cylindrical roughness elements was attached to the wall surface to regulate the near-wall low-speed streaky structures.With both qualitative visualization and quantitative measurement,we found that the regularization only occurs in the region below the height of the roughness elements.Statistical analysis on the probability distribution of the streak spanwise spacing showed that the mean spanwise streak spacing is dominated by the roughness elements;however,the latter's effect is in competition with the intrinsic streak generation mechanisms of smooth wall turbulence.Below the top of the roughness elements,local streamwise turbulent fluctuation intensity can be reduced by about 10%.We used POD analysis to depict such regularization effect in terms of near-wall structure modulation.We further found that if the spanwise spacing of roughness elements increased to be larger than the mean streak spacing in the smooth wall turbulence,there is no streak-regularization effect in the buffer region,so that the near-wall streamwise turbulent fluctuation intensity doesn't reduce.