Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular in...Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.展开更多
Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light ...Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.展开更多
factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, ...factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, 25, 32℃), irradiance ((0.02, 0.08, 0.3, 1.6)×10 16 quanta/(s·cm 2)) and salinity (10, 18, 25, 30, 35) significantly influenced the growth of this species. There were interactive effects between any two of and among all three physical factors on the growth. In the experiment, the most optimal growth condition for S. costatum was temparature of 25℃, salinity of 18-35 and irradiance of 1.6×10 16 quanta/(s·cm 2). The results indicated S. costatum could divide at higher rate and were more likely to bloom under high temperature and high illumination from spring to fall. It was able to distribute widely in ocean and estuary due to its adaptation to a wide range of salinities.展开更多
This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 200...This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 2007 and the East China Sea(ECS) on September 16, 2007, respectively. The SST and Chl- a data were obtained from the Aqua/Terra MODIS and NOAA18, respectively, and the temperature and salinity in the southeast of the study area were observed in situ from Argo. The average SST within the study area dropped from 26.33°C on September 10 to a minimum of 22.79°C on September 16. Without the usual phenomenon of ‘right bias', the most striking response of SST was in the middle of the typhoons' tracks, near to coastal waters. Strong cooling of the upper layers of the water column was probably due to increased vertical mixing, discharge from the Changjiang River estuary, and heavy rainfall. During the typhoons, average Chl-a increased by 11.54% within the study area and by 21.69% in the off shore area near to the southeast ECS. From September 1 to 13, average Chl-a was only 0.10 mg/m^3 in the of fshore waters but it reached a peak of >0.17 mg/m^3 on September 18. This large increase in Chl-a concentration in of fshore waters might have been triggered by strong vertical mixing, upwelling induced by strong typhoons, and sedimentation and nutrient infl ux following heavy rainfall.展开更多
The strength of the power frequency electric intensity and magnetic field of the 500-kV double circuit transmission lines was calculated by using the equivalent charge method and the Ampere's Law, and the environm...The strength of the power frequency electric intensity and magnetic field of the 500-kV double circuit transmission lines was calculated by using the equivalent charge method and the Ampere's Law, and the environmental impact factors of the fields were evaluated. By optimizing the phase sequence, the frequency electric intensity and magnetic field strength can be reduced. Within a distance of 25 m from the center of the transmission line, the power frequency electric intensity and magnetic field strength fall off sharply with the distance increase. Finally, the best phase sequence and the minimum ground clearance of the transmission lines were obtained to meet the requirements of the least impact on envionment.展开更多
Chemical reactions and fate of the toxins of Bacillus thuringiensis (Bt) in the soil environment are causing increasing concerns due to the large-scale cultivation of transgenic Bt plants. In this study, the effect ...Chemical reactions and fate of the toxins of Bacillus thuringiensis (Bt) in the soil environment are causing increasing concerns due to the large-scale cultivation of transgenic Bt plants. In this study, the effect of ionic strength (0-1 000 mmol kg-1) adjusted by NaCl or CaCl2 on adsorption of Bt toxin by a lateritic red soil, a paddy soil and these soils after chemical removal of organic-bound or free Fe and Al oxides, as well as by pure minerals (goethite, hematite and gibbsite) which are widespread in these soils, were studied. The results indicated that when the supporting electrolyte was NaCl, the adsorption of Bt toxin by the lateritic red soil and paddy soil increased rapidly until the ionic strength reached 250 mmol kg-1 and then gradually slowed down with the increase of ionic strength; while in ease the supporting electrolyte was CaCl2, the adsorption of Bt toxin enhanced significantly at low ionic strength (〈 10 mmol kg-1) and then decreased as the ionic strength increased. The adsorption of Bt toxin by the tested minerals and soils after the removal of organic-bound or free Fe and Al oxides also increased with increasing ionic strength controlled by NaCl. Removing organic-bound Fe and Al oxides obviously increased the adsorption of Bt toxin in the tested soils. Differently, removing free Fe and Al oxides increased the Bt adsorption by the paddy soil, but decreased the adsorption by the lateritic red soil. The study indicated that the varieties of ionic strength and the presence of Ve and Al oxides affected the adsorption of Bt toxin by the soils, which would contribute to the further understanding of the fate of Bt toxin in the soil environment and provide references for the ecological risk assessment of transgenic Bt plants.展开更多
文摘Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.
文摘Relationships between fluorescence parameters and membrane lipid peroxidation in leaves of indica and japonica rice (Oryza sativa L.) during later growth stage were studied under chilling temperature and strong light stress conditions. Results showed that D1 protein contents of PSⅡ in photosynthetic apparatus dropped, the generation of antheraxanthin (A) and zeaxanthin (Z) of xanthophyll cycle were inhibited partly, PSⅡ photochemical efficiency (F v/F m)and non-photochemical quenching (q N) were also decreased obviously. In addition, endogenous active oxygen scavenger—superoxide dismutase (SOD) reduced, superoxide anion radical (O -· 2) and malondialdehyde (MDA) accumulated, as a result, photooxidation of leaves occurred under chilling temperature and strong light stress conditions. Obvious differences in the changes of the above mentioned physiological parameters between indica and japonica rice were observed. Experiments in leaves treated with inhibitors under chilling temperature and strong light conditions showed that indica rice was more sensitive to chilling temperature with strong light and subjected to photooxidation more than japonica rice. Notable positive correlation between D1 protein contents and F v/F m or (A+Z)/(A+Z+V), and a marked negative correlation between F v/F m and MDA contents were obtained by regression analysis in indica and japonica rice during chilling temperature and strong light conditions. According to the facts mentioned above, it was inferred that PSⅡ photochemical efficiency(F v/F m) was the key index to forecast for the prediction of photooxidation under stress circumstances and the physiological basis were the synthetic capacity of D1 protein and the protection of xanthophyll cycle.
文摘factor experiment was used to study the combined effects of temperature, irradiance and salinity on the growth of an HAB species diatom Skeletonema costatum (Grev.) Cleve. The results showed that temperature (12, 19, 25, 32℃), irradiance ((0.02, 0.08, 0.3, 1.6)×10 16 quanta/(s·cm 2)) and salinity (10, 18, 25, 30, 35) significantly influenced the growth of this species. There were interactive effects between any two of and among all three physical factors on the growth. In the experiment, the most optimal growth condition for S. costatum was temparature of 25℃, salinity of 18-35 and irradiance of 1.6×10 16 quanta/(s·cm 2). The results indicated S. costatum could divide at higher rate and were more likely to bloom under high temperature and high illumination from spring to fall. It was able to distribute widely in ocean and estuary due to its adaptation to a wide range of salinities.
基金Supported by the National Marine Important Charity Special Foundation of China(No.201305019)the National Natural Science Foundation of China(No.41340049)+4 种基金the Natural Foundation of Guangdong(No.2014A030313603)the Science and Technology Planning Project of Guangdong(No.2013B030200002)the Zhejiang’s Post-Doctoral Funding(No.BSH1301015)the Novel Project for Developing University Sponsored by GDOU(No.GDOU2014050226)the Second Institute of Oceanography,State Oceanic Administration Post-Doctoral Starting Fund(No.JG1319)
文摘This study investigated the ef fects of two typhoons(Nari and Wipha) on sea surface temperature(SST) and chlorophyll- a(Chl- a) concentration. Typhoons Nari and Wipha passed through the Yellow Sea on September 13, 2007 and the East China Sea(ECS) on September 16, 2007, respectively. The SST and Chl- a data were obtained from the Aqua/Terra MODIS and NOAA18, respectively, and the temperature and salinity in the southeast of the study area were observed in situ from Argo. The average SST within the study area dropped from 26.33°C on September 10 to a minimum of 22.79°C on September 16. Without the usual phenomenon of ‘right bias', the most striking response of SST was in the middle of the typhoons' tracks, near to coastal waters. Strong cooling of the upper layers of the water column was probably due to increased vertical mixing, discharge from the Changjiang River estuary, and heavy rainfall. During the typhoons, average Chl-a increased by 11.54% within the study area and by 21.69% in the off shore area near to the southeast ECS. From September 1 to 13, average Chl-a was only 0.10 mg/m^3 in the of fshore waters but it reached a peak of >0.17 mg/m^3 on September 18. This large increase in Chl-a concentration in of fshore waters might have been triggered by strong vertical mixing, upwelling induced by strong typhoons, and sedimentation and nutrient infl ux following heavy rainfall.
文摘The strength of the power frequency electric intensity and magnetic field of the 500-kV double circuit transmission lines was calculated by using the equivalent charge method and the Ampere's Law, and the environmental impact factors of the fields were evaluated. By optimizing the phase sequence, the frequency electric intensity and magnetic field strength can be reduced. Within a distance of 25 m from the center of the transmission line, the power frequency electric intensity and magnetic field strength fall off sharply with the distance increase. Finally, the best phase sequence and the minimum ground clearance of the transmission lines were obtained to meet the requirements of the least impact on envionment.
基金Supported by the National Natural Science Foundation of China (Nos. 41001140 and 40671087)
文摘Chemical reactions and fate of the toxins of Bacillus thuringiensis (Bt) in the soil environment are causing increasing concerns due to the large-scale cultivation of transgenic Bt plants. In this study, the effect of ionic strength (0-1 000 mmol kg-1) adjusted by NaCl or CaCl2 on adsorption of Bt toxin by a lateritic red soil, a paddy soil and these soils after chemical removal of organic-bound or free Fe and Al oxides, as well as by pure minerals (goethite, hematite and gibbsite) which are widespread in these soils, were studied. The results indicated that when the supporting electrolyte was NaCl, the adsorption of Bt toxin by the lateritic red soil and paddy soil increased rapidly until the ionic strength reached 250 mmol kg-1 and then gradually slowed down with the increase of ionic strength; while in ease the supporting electrolyte was CaCl2, the adsorption of Bt toxin enhanced significantly at low ionic strength (〈 10 mmol kg-1) and then decreased as the ionic strength increased. The adsorption of Bt toxin by the tested minerals and soils after the removal of organic-bound or free Fe and Al oxides also increased with increasing ionic strength controlled by NaCl. Removing organic-bound Fe and Al oxides obviously increased the adsorption of Bt toxin in the tested soils. Differently, removing free Fe and Al oxides increased the Bt adsorption by the paddy soil, but decreased the adsorption by the lateritic red soil. The study indicated that the varieties of ionic strength and the presence of Ve and Al oxides affected the adsorption of Bt toxin by the soils, which would contribute to the further understanding of the fate of Bt toxin in the soil environment and provide references for the ecological risk assessment of transgenic Bt plants.