The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. in...The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted.展开更多
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete...Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.展开更多
The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat condu...The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.展开更多
This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal curre...This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinie tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey (G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.展开更多
The recently developed short-time linear response algorithm,which predicts the response of a nonlinear chaotic forced-dissipative system to small external perturbation,yields high precision of the response prediction....The recently developed short-time linear response algorithm,which predicts the response of a nonlinear chaotic forced-dissipative system to small external perturbation,yields high precision of the response prediction.However,the computation of the short-time linear response formula with the full rank tangent map can be expensive.Here,a numerical method to potentially overcome the increasing numerical complexity for large scale models with many variables by using the reduced-rank tangent map in the computation is proposed.The conditions for which the short-time linear response approximation with the reduced-rank tangent map is valid are established,and two practical situations are examined,where the response to small external perturbations is predicted for nonlinear chaotic forced-dissipative systems with different dynamical properties.展开更多
Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optim...Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.展开更多
基金Supported by the National Natural Science Foundation of China(11461074)the Program for Young and Middle-aged Leading Talents in Scientific and Technological Innovation of Jilin Province(20200301053RQ)。
文摘The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted.
基金Projects(51178174,51308201)supported by the National Natural Science Foundation of China
文摘Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle.
文摘The asymptotic behaviour of laminar forced convection in a circular duct, for a Herschel-Bulkley fluid with constant properties, is analysed by taking into account the viscous dissipation effects. The axial heat conduction in the fluid is neglected. The asymptotic temperature field and the asymptotic value of the Nusselt number are determined for every boundary condition that allows a fully developed region. Comparisons with other existing solutions for Newtonian and non-Newtonian cases are presented.
基金supported by the foundation items:The Chinese Marine Renewable Energy Special Fund(GHME 2012ZC05,GHME2013GC03,GHME2013ZC01,GHME 2014ZC01)
文摘This paper mainly analyzes the tidal characteristics and small-scale mixing process near Zhoushan Islands. First, the spectral analysis and wavelet analysis are adopted for the measured tide level data and tidal current data from the Zhoushan sea area, which indicate that the main tidal cycle near Hulu Island and Taohua Island is semi-diurnal cycle, the diurnal cycle is subordinate. Both their intensities are changed periodically, meanwhile, the diurnal tide becomes stronger when semi-diurnal tide becomes weak. The intensity of baroclinie tidal current weakens at first and then strengthens from top to bottom. Then, in this paper, the Gregg-Henyey (G-H) parameterization method is adopted to calculate the turbulent kinetic energy dissipation rate based on the measured temperature and tidal current data. The results of which shown that the turbulent kinetic energy dissipation rate around Hulu Island is higher than that around Taohua Island. In most cases, the turbulent kinetic energy dissipation rate during spring tide is larger than that during the neap tide; the turbulent kinetic energy dissipation rate in the surface layer and the bottom layer are higher than that in the intermediate water; the changes of turbulent kinetic energy dissipation rate and tidal current are basically synchronous The modeled turbulent kinetic energy dissipation rate gets smaller with the increase of the stratification, however, gets larger with the increase of shearing.
基金Project supported by the National Science Foundation (No.DMS-0608984)the Office of Naval Research(No.N00014-06-1-0286)
文摘The recently developed short-time linear response algorithm,which predicts the response of a nonlinear chaotic forced-dissipative system to small external perturbation,yields high precision of the response prediction.However,the computation of the short-time linear response formula with the full rank tangent map can be expensive.Here,a numerical method to potentially overcome the increasing numerical complexity for large scale models with many variables by using the reduced-rank tangent map in the computation is proposed.The conditions for which the short-time linear response approximation with the reduced-rank tangent map is valid are established,and two practical situations are examined,where the response to small external perturbations is predicted for nonlinear chaotic forced-dissipative systems with different dynamical properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.5120618451176203&51356001)
文摘Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.