期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
改进的强跟踪器自适应滤波信息融合方法 被引量:4
1
作者 刘华普 孔金生 董文丽 《微计算机信息》 北大核心 2007年第19期141-143,共3页
给出了改进的强跟踪器自适应滤波信息融合方法,该方法信息融合结果精度高,同时对突变信号有很强的实时跟踪能力。仿真结果表明了该方法的有效性和可靠性。
关键词 强跟踪器 自适应滤波 信息融合
下载PDF
结合重检测机制的多卷积层特征响应跟踪算法 被引量:4
2
作者 张晶 黄浩淼 《计算机科学与探索》 CSCD 北大核心 2021年第3期533-544,共12页
针对基于深度特征的目标跟踪算法在目标快速运动、长时间遮挡容易导致跟踪漂移的问题,提出了一种结合重检测机制的多卷积层特征响应跟踪算法。首先基于图像分块的混合高斯模型检测出目标区域,其次多卷积层根据加权梯度的类激活映射提取... 针对基于深度特征的目标跟踪算法在目标快速运动、长时间遮挡容易导致跟踪漂移的问题,提出了一种结合重检测机制的多卷积层特征响应跟踪算法。首先基于图像分块的混合高斯模型检测出目标区域,其次多卷积层根据加权梯度的类激活映射提取目标深度特征图,并训练出相互独立的相关滤波器,然后融合底层空间特征和高层语义特征的卷积层滤波器得到目标响应位置,再由重检测机制约束项平滑输出响应值,从而构建出强跟踪器,最后自适应地更新模型参数和权重系数,避免模型中参数过拟合,达到实时跟踪效果。实验结果表明,该算法在目标严重形变、快速运动、长时期遮挡等复杂情景下,跟踪结果具有很高的精确度和成功率。 展开更多
关键词 深度特征图 强跟踪器 混合高斯模型 检测机制
下载PDF
Active Fault Tolerant Control of a Class of Nonlinear Time-Delay Processes 被引量:8
3
作者 王东 周东华 金以慧 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期60-65,共6页
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP i... Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach. 展开更多
关键词 fault tolerant control TIME-DELAY nonlinear processes nonlinear state predictor strong tracking filter
下载PDF
Unscented Transformation Based Robust Kalman Filter and Its Applications in Fermentation Process 被引量:12
4
作者 王建林 冯絮影 +1 位作者 赵利强 于涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第3期412-418,共7页
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele... State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations. 展开更多
关键词 robust Kalman filter unscented transformation fermentation process nonlinear system
下载PDF
Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning 被引量:3
5
作者 XIAO Kun FANG Shao-ji PANG Yong-jie 《Journal of Marine Science and Application》 2007年第2期19-24,共6页
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance.... To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective. 展开更多
关键词 dead reckoning underwater vehicle strong tracking kalman filter measurement noise
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部