ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologie...ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in di...Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.展开更多
Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate ...Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.展开更多
With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and mainta...With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and maintain the safety requirement.In order to complete hot stamping,it is important to design the structure of parts reasonably,which is related with reasonable matching of strength.The objective of this paper is to guide the design of parts manufactured by hot stamping and find the forming technical requirements of vehicle performance.Through experiments,the paper obtains the stress and strain curves at different deformation temperatures and strain rates.Based on experimental data, the constitutive relationship model is established which can reflect the deformation capacity of ultra-high strength steel during the process of hot stamping.Combined with finite element simulation results of hot stamping by commercial software AUTOFORM,transfer path of load and matching law of strength,the paper determines the design criteria and forming technical requirements of parts manufactured by hot stamping.At the same time,the impact performance of front cross member internal plate is taken into consideration.展开更多
A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in exp...A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in experiments,including four-point bending test,compressive test,and scanning electric microscopy(SEM).The SEM observation was conducted to evaluate the contribution of polyvinyl alcohol(PVA) fiber and asphalt emulsion to the composite toughening mechanism.The tests results show that the most remarkable deflection-hardening behavior and saturated multiple cracking are achieved when the content of asphalt emulsion is 10%.However,excessive content of asphalt emulsion causes severe damages on the deformation behavior as well as loss in compressive strength of the mixture.SEM observation indicates that the influence of asphalt emulsion on the fiber/matrix interfacial property changes the dominant fiber failure type from rupture into pull-out mode,and thus causes beneficial effects for strain-hardening behavior.展开更多
The stress corrosion crack (SCC) susceptibility of ultra-high strength steel AerMet 100 was investigated by slow strain rate technique (SSRT), tensile with polarization and surface analysis technique. The curves o...The stress corrosion crack (SCC) susceptibility of ultra-high strength steel AerMet 100 was investigated by slow strain rate technique (SSRT), tensile with polarization and surface analysis technique. The curves of tf^Cl/tf^W -strain rate are divided into three regions: stress-dominated region, SCC-dominated region, and corrosion-dominated region, so as the curves of εf^Cl/εf^W - strain rate and tm/tf-strain rate. The results of tensile tests with polarization show that the main SCC mechanism of AerMet 100 is anodic dissolution, which controls the corrosion process. The three regions have been discussed according to the relationship between the rate of slip-step formation and the rate of dissolution. Fracture appearances in different environments were analyzed by scanning electron microscopy (SEM). SCC fracture appears as a mixture of intergranular and dimples, while it is totally dimples in the inert environment. The εf becomes the parameter to predict tf because the relationship between εf^Cl/εf^W and tf^Cl/tf^w is a straight line for AerMet 100.展开更多
Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high...Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.展开更多
The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and morta...The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and mortar samples prepared for the experiment. The quantitative analysis of XRD shows that ettringite formation is greatly reduced by incorporation of steel slag but there was a relatively low reduction of portlandite. Thermal analysis by TG shows that slag injection reduced portlandite content in the cement by at least 50%. Generally, the slag cement pastes required less water to form a workable paste compared to the reference cement, reducing as the slag content was increased. However, the setting times were higher than the reference. The permeability of the blended cement samples were lower than the control. The incorporation of 5% slag could not have an effect on the compressive strength of the concrete. The results confirmed that whilst cements with up to 15% slag content satisfied the strength requirements of class 42.5 N and those containing 20%-30% produce Class 32.5R cement.展开更多
Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferro...Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.展开更多
To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements ...To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.展开更多
The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides.In the present work,the effect of nitride precipitation behavior on the impact toughness of an experimental stee...The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides.In the present work,the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated.Nitrides could hardly be observed when the steel was tempered at 650℃.When the tempering temperature was increased to 700℃ and 750℃,a large amount of nitrides were observed in the matrix.It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules.The ductile-brittle transition temperature(DBTT) was also discovered to decrease from room temperature to 50℃ when the tempering temperature was increased from 650℃ to 750℃.The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.展开更多
基金Projects(51671166,51434008)supported by the National Natural Science Foundation of ChinaProject(2013CB733000)supported by the National Basic Research Program of China
文摘ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Project (2007K06-13) supported by the Science and Technique Research and Development Program of Shaanxi Province, China
文摘Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.
文摘Defect-free butt joints of 3003 Al alloy to mild steel plates with 3 mm thickness were performed using friction stir welding (FSW). A heat input model reported for similar FSW was simplified and used to investigate the effects of welding speed, rotation speed and tool shoulder diameter on the microstructure and properties of dissimilar welds. The comparison between microstructure, intermetallics and strength of welds shows the good conformity between the results and the calculated heat input factor (HIF) achieved from the model. The joint strength is controlled by Al/Fe interface at HIF of 0.2-0.4, by TMAZ at HIF of 0.4-0.8 and by intermetallics and/or defects at HIF0.8.
基金Project in the National Science & Technology Pillar Program during the"Twelfth Five-year Plan"Period(No.2011BAG03B02No.2011BAG03B06)
文摘With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and maintain the safety requirement.In order to complete hot stamping,it is important to design the structure of parts reasonably,which is related with reasonable matching of strength.The objective of this paper is to guide the design of parts manufactured by hot stamping and find the forming technical requirements of vehicle performance.Through experiments,the paper obtains the stress and strain curves at different deformation temperatures and strain rates.Based on experimental data, the constitutive relationship model is established which can reflect the deformation capacity of ultra-high strength steel during the process of hot stamping.Combined with finite element simulation results of hot stamping by commercial software AUTOFORM,transfer path of load and matching law of strength,the paper determines the design criteria and forming technical requirements of parts manufactured by hot stamping.At the same time,the impact performance of front cross member internal plate is taken into consideration.
基金Project(2011BAE27B04)supported by the National Key Technology R&D Program of ChinaProjects(CHD2011TD003,CHD2011ZD017)supported by the Special Fund for Basic Scientific Research of Central Colleges in Chang’an University,China
文摘A novel engineered cementitious composite(ECC) was prepared with the complex binder of Portland cement and asphalt emulsion.By adjusting the amount of asphalt emulsion,different mixture proportions were adopted in experiments,including four-point bending test,compressive test,and scanning electric microscopy(SEM).The SEM observation was conducted to evaluate the contribution of polyvinyl alcohol(PVA) fiber and asphalt emulsion to the composite toughening mechanism.The tests results show that the most remarkable deflection-hardening behavior and saturated multiple cracking are achieved when the content of asphalt emulsion is 10%.However,excessive content of asphalt emulsion causes severe damages on the deformation behavior as well as loss in compressive strength of the mixture.SEM observation indicates that the influence of asphalt emulsion on the fiber/matrix interfacial property changes the dominant fiber failure type from rupture into pull-out mode,and thus causes beneficial effects for strain-hardening behavior.
基金Project(51171011) supported by the National Natural Science Foundation of China
文摘The stress corrosion crack (SCC) susceptibility of ultra-high strength steel AerMet 100 was investigated by slow strain rate technique (SSRT), tensile with polarization and surface analysis technique. The curves of tf^Cl/tf^W -strain rate are divided into three regions: stress-dominated region, SCC-dominated region, and corrosion-dominated region, so as the curves of εf^Cl/εf^W - strain rate and tm/tf-strain rate. The results of tensile tests with polarization show that the main SCC mechanism of AerMet 100 is anodic dissolution, which controls the corrosion process. The three regions have been discussed according to the relationship between the rate of slip-step formation and the rate of dissolution. Fracture appearances in different environments were analyzed by scanning electron microscopy (SEM). SCC fracture appears as a mixture of intergranular and dimples, while it is totally dimples in the inert environment. The εf becomes the parameter to predict tf because the relationship between εf^Cl/εf^W and tf^Cl/tf^w is a straight line for AerMet 100.
文摘Over the past twenty years, significant advances have been made in the field of microalloying and associated applications, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4 mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling and cooling have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements. As stated by a good saying that practice makes perfect. Based on application practice and theoretical analysis, HTP has been extended to develop heavy gauge and high strength pipeline steels with increasing requirements, including X80 SSAW pipe with a thickness of 22.0 mm and above, X80 LSAW pipe combining heavy gauge and large diameter, heavy gauge X80 LSAW pipe with low temperature requirements, as well as X90 steels. In this paper, alloy design, production processing, as well as mechanical properties and microstructure used for these products would be illustrated.
文摘The hydration and mechanical properties of Portland cement blended with low-CaO steel slag were studied and reported. The steel slag was used to replace cement up to 30% and then blended cement powder, paste and mortar samples prepared for the experiment. The quantitative analysis of XRD shows that ettringite formation is greatly reduced by incorporation of steel slag but there was a relatively low reduction of portlandite. Thermal analysis by TG shows that slag injection reduced portlandite content in the cement by at least 50%. Generally, the slag cement pastes required less water to form a workable paste compared to the reference cement, reducing as the slag content was increased. However, the setting times were higher than the reference. The permeability of the blended cement samples were lower than the control. The incorporation of 5% slag could not have an effect on the compressive strength of the concrete. The results confirmed that whilst cements with up to 15% slag content satisfied the strength requirements of class 42.5 N and those containing 20%-30% produce Class 32.5R cement.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50731007 and 51021061)the Knowledge Innovation Project of the Chinese Academy of Sciencesthe High-Technology Research and Development Program of China
文摘Magnetic properties and magnetocaloric effects (MCEs) of the HoPdA1 compounds with the hexagonal ZrNiAl-type and the orthorhombic TiNiSi-type structures are investigated. Both the compounds are found to be antiferromagnet with the Nrel tem- perature TN=12 and 10 K, respectively. A field-induced metamagnetic transition from antiferromagnetic (AFM) state to ferro- magnetic (FM) state is observed below TN. For the hexagonal HoPdA1, a small magnetic field can induce an FM-like state due to a weak AFM coupling, which leads to a high saturation magnetization and gives rise to a large MCE around TN. The maxi- mal value of magnetic entropy change (ASM) is -20.6 J/kg K with a refrigerant capacity (RC) value of 386 J/kg for a field change of 0-5 T. For the orthorhombic HoPdA1, the critical field required for metamagnetic transition is estimated to be about 1.5 T, showing a strong AFM coupling. However, the maximal ASM value is still -13.7 J/kg K around TN for a field change of 0-5 T. The large reversible ASM and considerable RC suggest that HoPdA1 may be an appropriate candidate for magnetic re- frigerant in a low temperature range.
基金Project supported by the National Natural Science Foundation of China(Nos.51578496 and 51878603)the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)。
文摘To accurately control the full-span erection of continuous steel box girder bridges with complex cross-sections and long cantilevers, both the augmented finite element method(A-FEM) and the degenerated plate elements are adopted in this paper. The entire construction process is simulated by the A-FEM with the mesh-separation-based approximation technique, while the degenerated plate elements are constructed based on 3D isoparametric elements, making it suitable for analysis of a thin-walled structure. This method significantly improves computational efficiency by avoiding numerous degrees of freedom(DoFs) when analyzing complex structures. With characteristics of the full-span erection technology, the end-face angle of adjacent girder segments, the preset distance of girder segments from the design position, and the temperature difference are selected as control parameters, and they are calculated through the structural response of each construction stage. Engineering practice shows that the calculation accuracy of A-FEM is verified by field-measured results. It can be applied rapidly and effectively to evaluate the matching state of girder segments and the stress state of bearings as well as the thermal effect during full-span erection.
基金supported by the National Basic Research Program of China (Grant No. 2010CB630800)the National Natural Science Foundation of China (Grant No. 51001102)
文摘The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides.In the present work,the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated.Nitrides could hardly be observed when the steel was tempered at 650℃.When the tempering temperature was increased to 700℃ and 750℃,a large amount of nitrides were observed in the matrix.It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules.The ductile-brittle transition temperature(DBTT) was also discovered to decrease from room temperature to 50℃ when the tempering temperature was increased from 650℃ to 750℃.The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.