Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China e...Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China earthquake and the M9.0Tohoku,Japan earthquake as an example,and based on the data of water temperature coseismic responses observed in well ZK26 in Haikou,Hainan Province,China,we investigate the relationship between well water temperature change and heat transfer in the coseismic response process and the relevant thermodynamic mechanism by using the numerical simulation method for thermodynamic equations.Then,through forward modeling,we obtain several simulation curves of water temperature change in response to earthquakes along the well depth at different times.The simulated curves of water temperature change approximately fit the observed curves.Consequently,based on the variation of temperature,we find that the modes of well water temperature coseismic response( ascending,descending or stable) are related to factors such as the location of sensors,distribution and location of heat sources,the span between sensors and heat sources.展开更多
In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely str...In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.展开更多
基金sponsored by the Spark Program of 2011,China Earthquake Administration(XH1020)the Basic Research Program of the Hainan Province(ZDXM20110107)
文摘Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China earthquake and the M9.0Tohoku,Japan earthquake as an example,and based on the data of water temperature coseismic responses observed in well ZK26 in Haikou,Hainan Province,China,we investigate the relationship between well water temperature change and heat transfer in the coseismic response process and the relevant thermodynamic mechanism by using the numerical simulation method for thermodynamic equations.Then,through forward modeling,we obtain several simulation curves of water temperature change in response to earthquakes along the well depth at different times.The simulated curves of water temperature change approximately fit the observed curves.Consequently,based on the variation of temperature,we find that the modes of well water temperature coseismic response( ascending,descending or stable) are related to factors such as the location of sensors,distribution and location of heat sources,the span between sensors and heat sources.
基金supported by the National Natural Science Foundation of China (Grant No. 90815025)the Tsinghua University Research Funds (Grant No. 2010THZ02-1)the "Program for New Century Excellent Talents in University"
文摘In recent years, super high-rise buildings (>500 m) are developing very quickly and become an important frontier of civil engineering. The collapse resistance of super high-rise buildings subjected to extremely strong earthquake is a critical problem that must be intensively studied. This paper builds up a nonlinear finite element model of the tallest building in China, Shang- hai Tower (632 m), and proposes the modeling method and failure criteria for different structural elements. The dynamic char- acters of this building are then analyzed, and the possible failure modes and collapse processes due to earthquakes are pre- dicted, as well as the corresponding collapse mechanism. This work will be helpful in collapse prevention and the seismic design of super high-rise buildings.