This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes a...This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes and their influence on nearby faults.The results indicate that the M S5.5 earthquake in 2011 and the M_S7.3 earthquake in 2014 are both in the regions where the Coulomb stress change is positive,the stress changes are 0.004 MPa and 0.021 MPa, respectively, meaning they are triggered by prior earthquakes.The M S6.2 earthquake in 2012 occurred in the place where Coulomb stress change was negative,so it is postponed by the prior earthquakes.The image of Coulomb stress changes of the M S7.3 earthquake in 2014 is in accord with aftershocks( M L≥ 3.0)distribution,but some regions on the fault where the Coulomb stress change is positive have few aftershocks,and strong aftershocks may occur at these districts in future.In addition,this paper calculates the Coulomb stress change on nearby faults,and finds that the Coulomb stress changes of different elements in the GGC fault are very different,and must receive strong triggered-influence,though the result may be influenced by the input finite fault model,so there is still a large earthquake-risk.The GGN,PLC,PLW and LBW faults were also triggered by the four earthquakes occurring between 2008 ~ 2014.Their maximum Coulomb stress changes all exceed 0.002 MPa,so they also have a strong earthquake hazard.展开更多
Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for ...Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.展开更多
Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry...Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry out follow-up analysis of strong earthquake risk of active tectonic block boundaries.In this paper,we carry out the analysis on the tendency of strong earthquakes along each active tectonic block boundary from three aspects respectively,including the evolutionary characteristics of the Load/Unload Response Ratio time series,the probability method based on the log-normal distribution function,and variation of b value.The estimation of strong earthquake criticality on each active tectonic block boundary is done based on the evolutionary characteristics of the Load/Unload Response Ratio time series,the cumulative probability and conditional probability,and the decrease of the b value.Finally,according to the results of analyses on the above three aspects,the potential strong earthquake areas in the forthcoming 5 years in the Chinese mainland are discussed.展开更多
Boundary faults of the Daxing Uplift and Langgu-Dachang Depression are located in the southeastern region of the Beijing Plain and directly control the sedimentation,tectonic evolution,and strong seismic activity of t...Boundary faults of the Daxing Uplift and Langgu-Dachang Depression are located in the southeastern region of the Beijing Plain and directly control the sedimentation,tectonic evolution,and strong seismic activity of the plain.The Sanhe-Pinggu earthquake of Ms 8.0 occurred in 1679,but the active tectonic deformation characteristics of the boundary have been rarely discussed.In this study,the active tectonic deformation characteristics of the Daxing Uplift and Langgu-Dachang Depression boundary rupture were investigated by collecting and analyzing the results of previous works,supplementing three shallow-seismicexploration control lines at locations where the data are lacking,and carrying out borehole combined profi le exploration and optically stimulated luminescence dating at local breakpoints.Results show that the Daxing Uplift and Langgu-Dachang Depression boundary faults constitute an active tectonic deformation zone with~50 km distance between Mafang and Niubaotun towns and then extends to both ends to form a deep and large fault that cuts through the earth’s crust.The activity of the Daxing Uplift eastern boundary fault may be divided into two sections near Anding town,with the early-to-middle Late Pleistocene gradually weakening in the northwest and the Holocene gradually weakening in the southwest.Moreover,the activity of the Xiadian fault may be divided into two sections near the Chaobai River:the Holocene gradually weakening in the northwest and the early-to-middle Late Pleistocene gradually weakening in the southwest.The boundary fault of the Daxing Uplift and Langgu-Dachang Depression has an~43 km seismic gap around Niubaotun town,which has a high risk of Ms 6.0-7.0 earthquakes.This investigation into the active tectonic deformation characteristics of the boundary fault of the Daxing Uplift and Langgu-Dachang Depression is crucial for analyzing the strong earthquake rupture behavior and the future risk of strong earthquakes in this area.It also contributes greatly to the study of the tectonic pattern evolution of the North China Plain and Beijing Plain.展开更多
基金funded by the National Key Technology R&D Program of China(2012BAK19B02)
文摘This paper calculates the static Coulomb stress changes generated by four earthquakes in the Yutian area during 2008 ~ 2014 separately,then discusses the triggering influence,their accumulated Coulomb stress changes and their influence on nearby faults.The results indicate that the M S5.5 earthquake in 2011 and the M_S7.3 earthquake in 2014 are both in the regions where the Coulomb stress change is positive,the stress changes are 0.004 MPa and 0.021 MPa, respectively, meaning they are triggered by prior earthquakes.The M S6.2 earthquake in 2012 occurred in the place where Coulomb stress change was negative,so it is postponed by the prior earthquakes.The image of Coulomb stress changes of the M S7.3 earthquake in 2014 is in accord with aftershocks( M L≥ 3.0)distribution,but some regions on the fault where the Coulomb stress change is positive have few aftershocks,and strong aftershocks may occur at these districts in future.In addition,this paper calculates the Coulomb stress change on nearby faults,and finds that the Coulomb stress changes of different elements in the GGC fault are very different,and must receive strong triggered-influence,though the result may be influenced by the input finite fault model,so there is still a large earthquake-risk.The GGN,PLC,PLW and LBW faults were also triggered by the four earthquakes occurring between 2008 ~ 2014.Their maximum Coulomb stress changes all exceed 0.002 MPa,so they also have a strong earthquake hazard.
基金This research is supported by the National Key Basic Research 973 Project(Grant No.:2008CB425701)the Special Project M7.0~8.0 of China Earthquake Administration
文摘Based on seismic data from the regional network for the last 34 years, we analyzed the present fault behavior of major fault zones around the Mabian area, southern Sichuan, and identified the risky fault-segments for potential future. The method of analysis is a combination of activity background of historical strong earthquakes mainly show ~ ( 1 ) The spatial distribution of b-values strong and large earthquakes in the spatial distribution of b-values with and current seismicity. Our results indicates significant heterogeneity in the studied area, which reflects the spatial difference of cumulative stress levels along various fault zones and segments. (2) Three anomalously low b-value areas with different dimensions were identified along the Mabian-Yanjin fault zone. These anomalies can be asperities under relatively high cumulated stress levels. Two asperities are located in the north of Mabian county, in Lidian town in western Muchuan county, and near Yanjin at the south end of the fault zone. These two areas represent potential large earthquake seismogenic sites around the Mabian area in the near future. Besides them, the third relatively smaller asperity is identified at southern Suijiang, as another potential strong- earthquake source. (3) An asperity along the southwestern segment of the Longquanshan fault zone indicates the site of potential moderate-to-strong earthquakes. (4) The asperity along the segment between Huangmu town in Hanyuan county and Longchi town in Emeishan city on Jinkouhe-Meigu fault has potential for a moderate-strong earthquake.
基金sponsored by the Special Basic Scientific Research Program of Institute of Earthquake Science(02092425),China Earthquake Administration
文摘Previous studies have shown that the active tectonic block boundaries in the Chinese mainland are the main belts and concentration areas of strong earthquakes occurring in the Chinese mainland.It is essential to carry out follow-up analysis of strong earthquake risk of active tectonic block boundaries.In this paper,we carry out the analysis on the tendency of strong earthquakes along each active tectonic block boundary from three aspects respectively,including the evolutionary characteristics of the Load/Unload Response Ratio time series,the probability method based on the log-normal distribution function,and variation of b value.The estimation of strong earthquake criticality on each active tectonic block boundary is done based on the evolutionary characteristics of the Load/Unload Response Ratio time series,the cumulative probability and conditional probability,and the decrease of the b value.Finally,according to the results of analyses on the above three aspects,the potential strong earthquake areas in the forthcoming 5 years in the Chinese mainland are discussed.
文摘Boundary faults of the Daxing Uplift and Langgu-Dachang Depression are located in the southeastern region of the Beijing Plain and directly control the sedimentation,tectonic evolution,and strong seismic activity of the plain.The Sanhe-Pinggu earthquake of Ms 8.0 occurred in 1679,but the active tectonic deformation characteristics of the boundary have been rarely discussed.In this study,the active tectonic deformation characteristics of the Daxing Uplift and Langgu-Dachang Depression boundary rupture were investigated by collecting and analyzing the results of previous works,supplementing three shallow-seismicexploration control lines at locations where the data are lacking,and carrying out borehole combined profi le exploration and optically stimulated luminescence dating at local breakpoints.Results show that the Daxing Uplift and Langgu-Dachang Depression boundary faults constitute an active tectonic deformation zone with~50 km distance between Mafang and Niubaotun towns and then extends to both ends to form a deep and large fault that cuts through the earth’s crust.The activity of the Daxing Uplift eastern boundary fault may be divided into two sections near Anding town,with the early-to-middle Late Pleistocene gradually weakening in the northwest and the Holocene gradually weakening in the southwest.Moreover,the activity of the Xiadian fault may be divided into two sections near the Chaobai River:the Holocene gradually weakening in the northwest and the early-to-middle Late Pleistocene gradually weakening in the southwest.The boundary fault of the Daxing Uplift and Langgu-Dachang Depression has an~43 km seismic gap around Niubaotun town,which has a high risk of Ms 6.0-7.0 earthquakes.This investigation into the active tectonic deformation characteristics of the boundary fault of the Daxing Uplift and Langgu-Dachang Depression is crucial for analyzing the strong earthquake rupture behavior and the future risk of strong earthquakes in this area.It also contributes greatly to the study of the tectonic pattern evolution of the North China Plain and Beijing Plain.