期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
二阶强非线性非自治系统周期解的能量迭代法 被引量:4
1
作者 周一峰 唐进元 何旭辉 《振动与冲击》 EI CSCD 北大核心 2006年第3期193-197,共5页
给出了确定一般二阶强非线性非自治系统周期解的能量迭代方法。该方法给出了二阶强非线性非自治系统主谐波共振和超谐波、次谐波共振周期解存在的必要条件,求得了这些周期解的近似解析表达式,并且得出了解的稳定性判据。近似解析解表达... 给出了确定一般二阶强非线性非自治系统周期解的能量迭代方法。该方法给出了二阶强非线性非自治系统主谐波共振和超谐波、次谐波共振周期解存在的必要条件,求得了这些周期解的近似解析表达式,并且得出了解的稳定性判据。近似解析解表达式由计算机辅助推导,计算程序集推导、计算、数值解以及绘图于一体。例子表明,该方法不仅有效而且结果精度较高。 展开更多
关键词 非线性自治系统 周期解 稳定性 能量迭代法
下载PDF
强非线性多自由度自治系统的内共振
2
作者 李学平 蒋丽忠 《动力学与控制学报》 2006年第4期344-347,共4页
基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广.最后给... 基于改进的KBM法,研究了强非线性多自由度自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广.最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度. 展开更多
关键词 非线性多自由度自治系统 内共振 近似解
下载PDF
强非线性主动隔振系统的运动响应及传递率 被引量:7
3
作者 周一峰 唐进元 何旭辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第3期496-500,共5页
建立了主动隔振体的非线性动力学方程,即有阻尼受迫振动Duffing方程;对求解强非线性自治系统的能量迭代方法加以改进,将其用于求解强非线性非自治系统,得到了主动隔振系统周期运动响应的解析表达式和振幅—频率关系曲线,并按新振动传递... 建立了主动隔振体的非线性动力学方程,即有阻尼受迫振动Duffing方程;对求解强非线性自治系统的能量迭代方法加以改进,将其用于求解强非线性非自治系统,得到了主动隔振系统周期运动响应的解析表达式和振幅—频率关系曲线,并按新振动传递率定义研究了振动传递率与频率的关系。应用这一方法,获得了精度较高的周期解表达式、振幅与频率关系曲线以及位移传递率与频率关系曲线;得到了主动隔振问题的有关结果对于非线性硬弹簧系统(α>0),随着非线性项系数增大,共振的振幅虽然减小,但传递率增大,故隔振效果较差;对于非线性软弹簧系统(α≤0),随着非线性项系数的绝对值增大,共振的振幅减小,同时传递率也减小,故非线性软弹簧系统(α≤0)具有较好的主动隔振。 展开更多
关键词 强非线性自治系统 主动隔振 能量迭代法 传递率
下载PDF
轴向受力梁强非线性超谐波与次谐波共振的能量迭代法 被引量:6
4
作者 周一峰 唐进元 何旭辉 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第4期698-703,共6页
研究了在横向动载荷作用下存在轴向力的一类梁的强非线性振动;建立了梁振动的二阶强非线性非自治微分方程,并对求解强非线性自治系统的能量迭代法加以改进,用于求解梁的强非线性非自治系统,其方法是:由能量法得到主共振、超谐共振和次... 研究了在横向动载荷作用下存在轴向力的一类梁的强非线性振动;建立了梁振动的二阶强非线性非自治微分方程,并对求解强非线性自治系统的能量迭代法加以改进,用于求解梁的强非线性非自治系统,其方法是:由能量法得到主共振、超谐共振和次谐共振的一次近似解的表达式;引入牛顿迭代的思想和最小二乘法,得到高次近似解的表达式。研究结果表明:用改进后的能量迭代法求解强非线性非自治系统精度较高;分析这种非线性梁的振动时,除了要考虑其主共振外,还要考虑超谐共振和次谐共振。 展开更多
关键词 非线性自治系统 超谐共振 次谐共振 能量迭代法
下载PDF
用摄动法求解一类小参数方程的近似周期解
5
作者 侯宗毅 许莉 冯春华 《钦州学院学报》 2008年第3期20-23,共4页
主要讨论了强非线性拟保守自治系统+g(x)=εf(x,)的近似周期解及其稳定性,并应用以能量函数为基础的摄动法,分析了两个强非线性方程的近似周期解.实例表明,该摄动法不仅有效而且结果精度较高.
关键词 摄动法 非线性拟保守自治系统 小参数方程 近似周期解 稳定性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部