期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
被引量:
1
1
作者
胡启国
李致明
《华侨大学学报(自然科学版)》
CAS
2022年第3期291-296,共6页
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的B...
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的BP神经网络弱预测器函数迭代训练,形成MEA-AdaBoost-BP神经网络算法模型强预测器函数.最后,利用逼近隐性功能函数求解可靠性指标,并将其与AdaBoost-BP算法和Monte-Carlo算法进行比较.研究结果表明:所提算法在计算中与Monte-Carlo算法相比,其迭代次数分别仅为16次和46次,效率高,计算精度与Monte-Carlo法接近;而和AdaBoost-BP法相比,其可靠性指标误差分别仅为1.59%和1.88%,计算结果更精确.
展开更多
关键词
可靠性指标
思维进化算法(MEA)
AdaBoost-BP神经网络
MEA-AdaBoost-BP算法
强预测器函数
下载PDF
职称材料
题名
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
被引量:
1
1
作者
胡启国
李致明
机构
重庆交通大学机电与车辆工程学院
出处
《华侨大学学报(自然科学版)》
CAS
2022年第3期291-296,共6页
基金
国家自然科学基金资助项目(51375519)
重庆市基础科学与前沿技术研究专项(cstc2015jcyjBX0133)。
文摘
针对工程结构可靠性设计中算法和计算存在的问题,提出基于MEA-AdaBoost-BP神经网络算法模型的可靠性求解方法.运用思维进化算法(MEA)求解训练集权值和阈值优化的BP神经网络,并构造为弱预测器函数.然后,运用AdaBoost算法将多个优化后的BP神经网络弱预测器函数迭代训练,形成MEA-AdaBoost-BP神经网络算法模型强预测器函数.最后,利用逼近隐性功能函数求解可靠性指标,并将其与AdaBoost-BP算法和Monte-Carlo算法进行比较.研究结果表明:所提算法在计算中与Monte-Carlo算法相比,其迭代次数分别仅为16次和46次,效率高,计算精度与Monte-Carlo法接近;而和AdaBoost-BP法相比,其可靠性指标误差分别仅为1.59%和1.88%,计算结果更精确.
关键词
可靠性指标
思维进化算法(MEA)
AdaBoost-BP神经网络
MEA-AdaBoost-BP算法
强预测器函数
Keywords
reliability index
mind evolutionary algorithm(MEA)
AdaBoost-BP neural network
MEA-AdaBoost-BP algorithm
strong predictor function
分类号
TB114.3 [理学—概率论与数理统计]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用MEA-AdaBoost-BP模型的工程结构可靠性分析方法
胡启国
李致明
《华侨大学学报(自然科学版)》
CAS
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部