Abstract Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and fiat topography. In order to evaluate the intensity...Abstract Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and fiat topography. In order to evaluate the intensity of c01d wave storm surge, the hindcast of ma- rine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge-wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the 'cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.展开更多
Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influen...Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.展开更多
基金partially supported by the National Natural Science Foundation of China (Nos.51279186,51479183)the National Key Research and Development Program (Nos.2016YFC0303401,2016YFC0802301)
文摘Abstract Dike failure and marine losses are quite prominent in Laizhou Bay during the period of cold wave storm surges because of its open coastline to the north and fiat topography. In order to evaluate the intensity of c01d wave storm surge, the hindcast of ma- rine elements induced by cold waves in Laizhou Bay from 1985 to 2004 is conducted using a cold wave storm surge-wave coupled model and the joint return period of extreme water level, concomitant wave height, and concomitant wind speed are calculated. A new criterion of cold wave storm surge intensity based on such studies is developed. Considering the frequency of cold wave, this paper introduces a Poisson trivariate compound reconstruction model to calculate the joint return period, which is closer to the reality. By using the newly defined cold wave storm surge intensity, the 'cold wave grade' in meteorology can better describe the severity of cold wave storm surges and the warning level is well corresponding to different intensities of cold wave storm surges. Therefore, it provides a proper guidance to marine hydrological analysis, disaster prevention and marine structure design in Laizhou Bay.
基金supported by the National Natural Science Foundation of China (Nos. 51279186,51479183)the National Program on Key Basic Research Project (2011CB013704)+1 种基金the 111 Project (B14028)the Marine and Fishery Information Center Project of Jiangsu Province (SJC2014110338)
文摘Storm surge is one of the predominant natural threats to coastal communities. Qingdao is located on the southern coast of the Shandong Peninsula in China. The storm surge disaster in Qingdao depends on various influencing factors such as the intensity, duration, and route of the passing typhoon, and thus a comprehensive understanding of natural coastal hazards is essential. In order to make up the defects of merely using the warning water level, this paper presents two statistical distribution models(Poisson Bi- variable Gumbel Logistic Distribution and Poisson Bi-variable Log-normal Distribution) to classify the intensity of storm surge. We emphasize the joint return period of typhoon-induced water levels and wave heights measured in the coastal area of Qingdao since 1949. The present study establishes a new criterion to classify the intensity grade of catastrophic storms using the typhoon surge estimated by the two models. A case study demonstrates that the new criterion is well defined in terms of probability concept, is easy to implement, and fits well the calculation of storm surge intensity. The procedures with the proposed statistical models would be useful for the disaster mitigation in other coastal areas influenced by typhoons.