期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
强n-凝聚环
1
作者 朱占敏 《数学年刊(A辑)》 CSCD 北大核心 2017年第3期313-326,共14页
设R是一个环,n是一个正整数.右R-模M称为强n-内射的,如果从任一自由右R-模F的任一n-生成子模到M的同态都可扩张为F到M的同态;右R-模V称为强n-平坦的,如果对于任一自由右R-模F的任一n-生成子模T,自然映射VT→VF是单的;环R称为左强n-... 设R是一个环,n是一个正整数.右R-模M称为强n-内射的,如果从任一自由右R-模F的任一n-生成子模到M的同态都可扩张为F到M的同态;右R-模V称为强n-平坦的,如果对于任一自由右R-模F的任一n-生成子模T,自然映射VT→VF是单的;环R称为左强n-凝聚的,如果自由左R-模的n-生成子模是有限表现的;环R称为左n-半遗传的,如果R的每个n-生成左理想是投射的.本文研究了强n-内射模,强n-平坦摸及左强n-凝聚环.通过模的强n-内射性和强n-平坦性概念,作者还给出了强n-凝聚环和n-半遗传环的一些刻画. 展开更多
关键词 n-内射模 n-平坦模 强n-凝聚环 m半遗传
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部