常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体...常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。展开更多
针对基于单一阈值的大范围水体提取同时存在着漏提与误提的局限性,提出了基于大津法的局部范围阈值自适应确定的方法。通过分析水体与其背景地物的光谱特征,发现归一化水体指数(Normalized Difference Water Index,NDWI)直方图呈现明显...针对基于单一阈值的大范围水体提取同时存在着漏提与误提的局限性,提出了基于大津法的局部范围阈值自适应确定的方法。通过分析水体与其背景地物的光谱特征,发现归一化水体指数(Normalized Difference Water Index,NDWI)直方图呈现明显的双峰分布,对NDWI使用大津法可以较准确地自动计算出水体与非水体的阈值。在初始阈值提取的水体信息的基础上,通过窗体提取局部范围的水体及其背景并进行局部自适应阈值的计算,实现自适应阈值水体信息的提取。使用环境小卫星影像对闽江流域进行水体提取实验,结果表明该方法可实现大范围水体快速提取,提取精度为95.25%,较全局统一阈值提取精度提高5.25%,并能在一定程度上消除地形阴影与建筑物等的影响,对细小水体的提取精度有所提高。展开更多
文摘针对基于单一阈值的大范围水体提取同时存在着漏提与误提的局限性,提出了基于大津法的局部范围阈值自适应确定的方法。通过分析水体与其背景地物的光谱特征,发现归一化水体指数(Normalized Difference Water Index,NDWI)直方图呈现明显的双峰分布,对NDWI使用大津法可以较准确地自动计算出水体与非水体的阈值。在初始阈值提取的水体信息的基础上,通过窗体提取局部范围的水体及其背景并进行局部自适应阈值的计算,实现自适应阈值水体信息的提取。使用环境小卫星影像对闽江流域进行水体提取实验,结果表明该方法可实现大范围水体快速提取,提取精度为95.25%,较全局统一阈值提取精度提高5.25%,并能在一定程度上消除地形阴影与建筑物等的影响,对细小水体的提取精度有所提高。