期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Normalized edge detection, and the horizontal extent and depth of geophysical anomalies 被引量:2
1
作者 李丽丽 韩立国 黄大年 《Applied Geophysics》 SCIE CSCD 2014年第2期149-157,252,253,共11页
Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies... Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data. 展开更多
关键词 geophysical anomalies normalized edge detection normalized total horizontal derivative regularization tilt angle theta map
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部