针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)...针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。展开更多
论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接...论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接利用瞬时误差控制步长,避免了噪声干扰,降低了稳态失调,可工作于低信噪比环境。同时新算法步长控制无记忆效应,提高了收敛速度。仿真表明,新算法的稳态失调和收敛速度均优于现有变步长LMS算法。展开更多
为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数...为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数用于刻画步长因子与稳态误差的非线性关系。该对称非线性函数具有能够根据误差动态调整步长、更快达到收敛状态的特点。根据构造的对称非线性函数和输入信号功率生成归一化变步长因子,解决噪声逐级放大的问题,进一步提高算法的滤波效果同时,加速收敛。实验表明:该算法在低信噪比、信噪比变化、信号频率变化、滤波器阶数变化、延迟采样点数变化条件下均具有更好的滤波效果、更优的稳定性和更快的收敛速度。展开更多
为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸...为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.展开更多
文摘针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。
文摘论文研究了自适应最小均方误差(Least Mean Squares,LMS)滤波算法的步长选取问题。在分析现有算法的基础上,通过构造步长与误差信号之间的非线性函数,提出一种新的变步长LMS算法。新算法采用误差信号的自相关估计值控制步长,而不是直接利用瞬时误差控制步长,避免了噪声干扰,降低了稳态失调,可工作于低信噪比环境。同时新算法步长控制无记忆效应,提高了收敛速度。仿真表明,新算法的稳态失调和收敛速度均优于现有变步长LMS算法。
文摘为解决自适应最小均方误差(least mean squares,LMS)滤波算法难以平衡稳态误差和收敛速度的问题,提出了基于对称非线性函数的变步长LMS自适应滤波算法。通过自变量取绝对值、叠加非线性拉伸量改进Sig-moid函数,构造一个对称非线性函数用于刻画步长因子与稳态误差的非线性关系。该对称非线性函数具有能够根据误差动态调整步长、更快达到收敛状态的特点。根据构造的对称非线性函数和输入信号功率生成归一化变步长因子,解决噪声逐级放大的问题,进一步提高算法的滤波效果同时,加速收敛。实验表明:该算法在低信噪比、信噪比变化、信号频率变化、滤波器阶数变化、延迟采样点数变化条件下均具有更好的滤波效果、更优的稳定性和更快的收敛速度。
文摘为了避免单个滤波器在收敛速度与稳态误差上相互制约,从而导致系统性能降低的问题,本文采用凸组合最小均方算法(Combined Least Mean Square,CLMS),将快速滤波器和慢速滤波器并联使用,同时为进一步改善CLMS算法的性能,对已有的变步长凸组合最小均方算法(Variable Step-size Convex Combination of LMS,VSCLMS)做出改进,提出了一种新的VSCLMS算法.在该算法中,对快速滤波器选用以最小均方权值偏差(Minimization of Mean Square Weight Error,MMSWE)为准则的按步分析的变步长滤波器;对慢速滤波器采用以稳态最小均方误差(Least Mean Square,LMS)为准则的固定步长滤波器.通过理论分析与仿真实验表明,该算法能够在噪声、时变以及非平稳的环境下保持较好的随动性能,且在各个阶段均保持良好的收敛性,与传统的CLMS、VSCLMS算法相比,不仅具有更快的收敛速度,而且拥有稳定的均方性能和较优的跟踪性能,为自适应滤波算法的研究提供了一条可行途径.