In this paper,a common characteristic of real number system and well ordered set is revealed and proved to be an equivalent form of the Dedekind Axiom or the Continuous Induction in R. Basing on it,we get the unif...In this paper,a common characteristic of real number system and well ordered set is revealed and proved to be an equivalent form of the Dedekind Axiom or the Continuous Induction in R. Basing on it,we get the unified form of the mathematical induction,the transfinite induction and the continuous induction and generalize induction to totally ordered set that has the same characteristic.展开更多
We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asy...We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.展开更多
文摘In this paper,a common characteristic of real number system and well ordered set is revealed and proved to be an equivalent form of the Dedekind Axiom or the Continuous Induction in R. Basing on it,we get the unified form of the mathematical induction,the transfinite induction and the continuous induction and generalize induction to totally ordered set that has the same characteristic.
基金Supported by Natural Science Foundation of Jiangsu Province,China (No.BK20171421)。
文摘We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.