The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software f...The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.展开更多
Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic ...Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic strength of the chamber were analyzed by measuring the strain profiles of six characteristic points on the chamber.The research results revealed the rule of the dynamic response of the chamber on different explosive loads and static pressures.It provides references for the design and development of the chamber to simulate deepwater explosion.展开更多
文摘The content of this subject research is to conduct optimization for engine mounting system, and through optimization, it can make the vibration between engine and vehicle body achieve a minimum, using Adams software for simulation. It studies the isolation vibration of the engine mounting system and conducts goal optimization for fixed frequency. This paper uses two methods for optimization. One is to use the rational allocation of fixed frequency to optimize the fixed frequency, and the other is to use energy decoupling method to optimize the fixed frequency. It uses Adams software for simulation of the optimized fixed frequency and conducts comparison of simulated results. The simulated results show that the optimized energy distribution situation almost achieves 90%. Compared with original data, decoupling degree also has a very great improvement, illustrating that the optimized data has greater effect for the isolated vibration of engine, in order to further verify the feasibility of optimization design method.
基金National Natural Science Foundation of China (No. 51174147) Hubei Province Natural Sci- ence Foundation (No. 2012FFA13)
文摘Experimental investigation was conducted for the dynamic response of a real spherical explosive chamber that can simulate 200 m deepwater explosive loaded 10 g TNT equivalent.The vibration characteristics and dynamic strength of the chamber were analyzed by measuring the strain profiles of six characteristic points on the chamber.The research results revealed the rule of the dynamic response of the chamber on different explosive loads and static pressures.It provides references for the design and development of the chamber to simulate deepwater explosion.