针对某船用管壳式离心通风机扩散筒流动损失大、静压回收偏低的问题,采用CFD方法对该风机内流场进行了数值模拟,研究扩散筒扩散比 A e/ A in 、长径比 l/D in 对风机性能与扩散筒流动的影响,寻求气动性能相对较优的扩散筒结构。在保证...针对某船用管壳式离心通风机扩散筒流动损失大、静压回收偏低的问题,采用CFD方法对该风机内流场进行了数值模拟,研究扩散筒扩散比 A e/ A in 、长径比 l/D in 对风机性能与扩散筒流动的影响,寻求气动性能相对较优的扩散筒结构。在保证风机主体几何参数和扩散筒进口直径不变的条件下,令长径比 l/D in 为0.8、1.2、1.6;扩散比 A e/ A in 为1.2、1.5、1.8,获得9个扩散筒模型,并计算出不同参数的扩散筒对应的当量扩张角。模拟结果表明:风机全压随扩散比增大显著增加,扩散筒长径比对风机全压的影响较小;扩散筒压力损失系数会随扩散比增大而降低且在不同流量工况下逐渐趋近平稳;扩散比对扩散筒性能影响显著,而当量扩张角对扩散筒性能的影响没有明显的规律性,因此在扩散筒设计时扩张角不能作为唯一依据。展开更多
文摘针对某船用管壳式离心通风机扩散筒流动损失大、静压回收偏低的问题,采用CFD方法对该风机内流场进行了数值模拟,研究扩散筒扩散比 A e/ A in 、长径比 l/D in 对风机性能与扩散筒流动的影响,寻求气动性能相对较优的扩散筒结构。在保证风机主体几何参数和扩散筒进口直径不变的条件下,令长径比 l/D in 为0.8、1.2、1.6;扩散比 A e/ A in 为1.2、1.5、1.8,获得9个扩散筒模型,并计算出不同参数的扩散筒对应的当量扩张角。模拟结果表明:风机全压随扩散比增大显著增加,扩散筒长径比对风机全压的影响较小;扩散筒压力损失系数会随扩散比增大而降低且在不同流量工况下逐渐趋近平稳;扩散比对扩散筒性能影响显著,而当量扩张角对扩散筒性能的影响没有明显的规律性,因此在扩散筒设计时扩张角不能作为唯一依据。