LEF1/TCFs are high mobility group box-containing transcriptional factors mediating canonical Wnt/β-catenin signaling during early embryogenesis and tumorigenesis. β-Catenin forms a complex with LEF 1/TCFs and transa...LEF1/TCFs are high mobility group box-containing transcriptional factors mediating canonical Wnt/β-catenin signaling during early embryogenesis and tumorigenesis. β-Catenin forms a complex with LEF 1/TCFs and transactivates LEF1/TCF-mediated transcriptions during dorsalization. Although LEF-mediated transcription is also implicated in ventralization, the underlying molecular mechanism is not well understood. Using the vertebrate Xenopus laevis model system, we found that Xom, which is a ventralizing homeobox protein with dual roles of transcriptional activation and repression, forms a complex with LEF 1/TCF through its homeodomain and transactivates LEF 1/TCF-mediated transcription through its N-terminal transactivation domain (TAD). Our data show that Xom lacking the N-terminal TAD fails to transactivate ventral genes, such as BMP4 and Xom itself, but retains the ability to suppress transcriptional activation of dorsal gene promoters, such as the Goosecoid promoter, indicating that transactivation and repression are separable functions of Xom. It has been postulated that Xom forms a positive re-enforcement loop with BMP4 to promote ventral- ization and to suppress dorsal gene expression. Consistent with an essential role of Xom transactivation of LEF1/TCFs during early embryogenesis, we found that expression of the dominant-negative Xom mutant that lacks the TAD fails to re-enforce the ventral signaling of BMP4 and causes a catastrophic effect during gastrulation. Our data suggest that the functional interaction of Xom and LEF 1/TCF-factors is essential for ventral cell fate determination and that LEF 1/TCF factors may function as a point of convergence to mediate the combined signaling of Wnt/β-catenin and BMP4/Xom pathways during early embryogenesis.展开更多
E2 is an envelope glycoprotein of Classical swine fever virus (CSFV) and contains sequential neutralizing epitopes to induce virus-neutralizing antibodies and mount protective immunity in the natural host. In this stu...E2 is an envelope glycoprotein of Classical swine fever virus (CSFV) and contains sequential neutralizing epitopes to induce virus-neutralizing antibodies and mount protective immunity in the natural host. In this study, four antigen domains (ABCD) of the E2 gene was cloned from CSFV Shimen strain into the retroviral vector pBABE puro and expressed in eukaryotic cell (PK15) by an retroviral gene expression system, and the activity of recombinant E2 protein to induce immune responses was evaluated in rabbits. The results indicated that recombinant E2 protein can be recognized by fluorescence antibodies of CSFV and CSFV positive serum (Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China) using Western blot, indirect immunofluorescence antibody test (IFAT) and ELISA, Furthermore, anti-CSFV specific antibodies and lymphocyte proliferation were elicited and increased by recombinant protein after vaccination. In the challenge test, all of rabbits vaccinated with recombinant protein and Chinese vaccine strain (C-strain) were fully protected from a rabbit spleen virus challenge. These results indicated that a retroviral-based epitope-vaccine carrying the major antigen domains of E2 is able to induce high level of epitope-specific antibodies and exhibits similar protective capability with that induced by the C-strain, and encourages further work towards the development of a vaccine against CSFV infection.展开更多
Although male and female pronuclei reside in the same zygotic cytoplasm, they differ in many respects, such asvolume and transcriptional activity. The aim of this study is to investigate whether these differences are ...Although male and female pronuclei reside in the same zygotic cytoplasm, they differ in many respects, such asvolume and transcriptional activity. The aim of this study is to investigate whether these differences are lost during thefirst mitosis. For this purpose, a new method was developed to inhibit the mixing of two parental chromosomes duringmitosis, thus to induce the formation of two nuclei after they exit from the mitotic phase. In this method, one-cellembryos are arrested at metaphase by treatment with nocodazole, and whn exitting from the mitotic phase, two nucleiwere formed in a single karyocyte following treatment with 6-dimethylaminopurine (6-DMAP). These embryos weredesignated as post-mitotic embryos (PM-embryos), in which the two nuclei were derived from the male and femalegenomes. We found that in the control one-cell embryos that had not been treated with the reagents, the volume of themale pronucleus was about 1.65-fold greater than that of the female pronucleus, whereas the volumes of the two nucleiin the PM-embryos were similar (volume ratio of 1.01). Although a two-fold difference in transcriptional activity wasdetected between the male and female pronuclei in the control embryos, no difference in transcriptional activity wasdetected between the two nuclei of PM-embryos. The ratio of transcriptional activity in the nucleus derived from thepaternal genome to that from the maternal genome was 1.02, for which no significant difference was detected by the χ2fitness test. Therefore, the volumes and transcriptional activities of the male and female nuclei were approximately equalin PM-embryos, which suggests that the asymmetries of pronuclear volume and transcriptional activity between maleand female genomes are somehow losted during the first mitosis.展开更多
Objective:To investigate the effects of -2242,-1892 and -1837 single nucleotide polymorphisms(SNPs) on toll-like receptor 4(TLR4) promoter activity.Methods:Polymerase chain reaction(PCR) and site direct mutation techn...Objective:To investigate the effects of -2242,-1892 and -1837 single nucleotide polymorphisms(SNPs) on toll-like receptor 4(TLR4) promoter activity.Methods:Polymerase chain reaction(PCR) and site direct mutation technology were used to construct TLR4 basic promoter and -2242C,-1892A and -1837G mutate promoter plasmids.Dual-Luciferase Reporter assay system was used to detect the activity of constructed promoter following human embryonic kidney(HEK) 293 cells were transiently cotransfected with the constructed plasmids and the control plasmid pRL-CMV.Results:In HEK293 cells,the activity of -2242C mutate promoter was higher than -2242T promoter,and there was no significant difference when both -1892A and -1837G mutate promoter compared with -1892G and -1837A promoter,respectively.Conclusion:It is implied that -2242T→C base variation can enhance the activity of TLR4 promoter,while -1892 and -1837 SNPs have no effect on TLR4 promoter activity.展开更多
Objective:The aim of the study was to examine the effect of Sp1 on the expression of the human telomerase reverse transcriptase(hTERT) gene in human colorectal carcinoma SW480 cells.Methods:The Sp1 shRNA plasmid was t...Objective:The aim of the study was to examine the effect of Sp1 on the expression of the human telomerase reverse transcriptase(hTERT) gene in human colorectal carcinoma SW480 cells.Methods:The Sp1 shRNA plasmid was transfected into colorectal carcinoma SW480 cells line by liposome mediation for transient expression.After Sp1 shRNA plasmid transfected SW480 cells,the exogenous Sp1 protein expression was determined by the method of Western blot.At same time,hTERT mRNA expression was detected by RT-PCR,telomerase activity was determined by the telomeric repeat amplification protocol(TRAP) assay,and the apoptotic rate of cells was also tested by flow cytometry.Results:The protein expressions of Sp1 gene could be reduce by transfecting of pGenesil-1-Sp1(+) recombinant plasmid into SW480 cells.The apoptotic rate was increased compared with pGenesil-1-Sp1(-)/SW480 and SW480(P < 0.05),which indicated that lowexpression of Sp1 gene could lead to low level of telomerase activity and induce apoptosis.Conclusion:Silencing Sp1 may suppress the activity of telomerase by inhabiting hTERT gene expression.展开更多
Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS)...Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.展开更多
Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentia...Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.展开更多
AIM: TO investigate the effects of the somatostatin analogue, octreotide, on maltose and sucrase activities and expression of glucose transporter type 2 (GLUT2) in obese rat intestinal mucosa. METHODS: We divided ...AIM: TO investigate the effects of the somatostatin analogue, octreotide, on maltose and sucrase activities and expression of glucose transporter type 2 (GLUT2) in obese rat intestinal mucosa. METHODS: We divided 49 Sprague-Dawley rats into a group of 31 high fat diet-induced obese rats and a group of 18 normal controls. The obese rats were separated into an octreotide treated group 9f 16 rats and an obese group of 15. The intervention (:jroup was injected with octreotide at 40 ±g/kg body weight every 12 h for 8 d. Rat body weight was measured weekly to calculate Lee's index. After euthanization, maltase and sucrase activities in the small intestine were measured by activity assays, and the fasting plasma glucose level was measured. The expression of GLUT2 in small intestinal mucosa was analyzed by immunohistochemistry, reverse transcriptase polymerase chain reaction and Western blotting assays. RESULTS: Body weight, Lee's index, fasting plasma glucose level, maltase activity in small intestinal mucosa, mucosa and apical GLUT2, GLUT2 mRNA and protein expression levels were all significantly higher in the obese group than in the normal control group (605.61 ± 141.00 vs 378.54 ±111.75, 337.61 ± 10.82 vs 318.73 ± 20.10, 8.60± 1.38 vs 7.33 ± 0.70, 156.01 ± 58.81 vs 50.43 ± 30.49, 390 744.2± 62 469.21 vs 170 546.50 ± 50 646.14, 26 740.18 ±3809.60 vs 354.98± 57.19, 0.26± 0.11 vs 0.07± 0.02, and 2.08 ± 0.59 vs 1.27 ± 0.38, respectively, all P 〈 0.01). Sucrase activity did not differ between the two groups. Octreotide intervention significantly decreased the body weight and fasting plasma glucose level of obese rats (508.27 ± 94.39 vs 605.61 ± 141.00, 7.58 ± 1.51 vs 8.60±1.38, respectively, all P 〈 0.05). The intestinal mucosa and apical GLUT2, expression of GLUT2 mRNA and protein were also significantly lower in the octreotide intervention group than in the obese group (269 975.2 ± 53 730.94 vs 390 744.2 ± 62 469.21, 3758.06 ± 364.51 vs 26 740.18 ± 3809.60, 0.08 ± 0.02 vs 0.26 ±0.11, and 1.31 ± 0.27 vs 2.08 ±0.59, respectively, all P 〈 0.01). CONCLUSION: High fat dietinduced obesity is associated with elevated intestinal maltase activity, GLUT2 expression, and permanent apical GLUT2 in the small intestinal mucosa of rats. Octreotide can inhibit these effects.展开更多
AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activ...AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA binding activity was also markedly decreased by EGCG. Furthermore, EGCG inhibited IL-6 induced vascular endothelial cell proliferation and tube formation in vitro and angiogenesis in vitro . CONCLUSION: EGCG inhibits IL-6-induced VEGF expression and angiogenesis via suppressing Stat3 activity in gastric cancer, which has provided a novel mechanistic insight into the anti-angiogenic activity of EGCG.展开更多
Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two...Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.展开更多
Since the introduction of antiretroviral therapy (ART), the lifespan and quality of life of patients infected with HIV have been significantly improved. But treatment efficacy was compromised eventually by the develop...Since the introduction of antiretroviral therapy (ART), the lifespan and quality of life of patients infected with HIV have been significantly improved. But treatment efficacy was compromised eventually by the development of resistance to antiretroviral drugs, and more new anti-HIV drugs with lower toxicity and higher activity were needed. Based on the experience and lessons learned from the treatment in the developed countries, US FDA suggested that more pharmacodynamical researches should be considered ahead of the clinical trials. To facilitate the anti-HIV drug research and development, we reviewed a few specialized issues that should be focused on drug evaluations in vitro, including: 1) Mechanism of action studies, demonstrating the candidate drug's efficacy to specifically inhibit viral replication or a virus-specific function and confirm the drug target. 2) Drug resistance studies, selecting the drug-resistant variants in vitro and determining the activities inhibiting HIV isolates resistant to approved antiretroviral drugs of the same class. 3) Antiviral activity in vitro in the presence of serum proteins, ascertaining whether an investigational product is significantly bound by serum proteins. 4) Combination activity analysis, evaluating in vitro antiviral activity of an investigational product in two-drug combinations with other drugs approved.展开更多
To clarify the role of APOBEC3G (A3G) in cellular defense against hepatitis B virus (HBV), the expression of A3G in normal human liver and the regulation of the A3G expression in hepatoma cell line (HuH-7) were ...To clarify the role of APOBEC3G (A3G) in cellular defense against hepatitis B virus (HBV), the expression of A3G in normal human liver and the regulation of the A3G expression in hepatoma cell line (HuH-7) were investigated. Expression level of APOBEC3s mRNA in human liver was determined by RT-PCR. HuH-7 and HepG2 cells were treated with various concentrations of IFN-α(0 U/ml, 100 U/ml, 500 U/ml, 1000 U/ml)for 12 h. The mRNA levels were measured by a quantitative RT-PCR, the results were normalized relative to the specimens without IFN-α stimulation. Total protein of HuH-7 cells treated with various concentrations of IFN-α for 48 h was subjected to Western blot analysis. For reporter gene assay, HuH-7 cells were transfected with the reporter plasmids containing IRF- E sites and its mutants with different lengths. Then the cells were treated with or without 1200 U/ml IFN-α for additional 12 h ( 1000 U/ml) after 24 h of transfection, and the cell lysate was prepared and assayed for lueiferase activity. It was found that normal human liver expressed the rnR_NA of A3G. A3G mRNA expression in HuH-7 and HepG2 cells were up-regulated by IFN-α stimulation in a dose-depen- dent manner. Western blot analysis indicated that A3G protein expression was also enhanced by IFN-α stimulation. Sequence analysis showed the existence of putative sites of IFN regulatory factor element (IRF-E) in 5' region of A3G gene upstream the initiation eodon. IFN-α stimulation results in 6- to 8- fold increase in lueiferase activity in cells transfeeted with the plasmid containing IRF-E sites of the 5' upstream sequences, whereas luciferase activity did not change in cells transfected with the plasmid containing mutant IRF-E sites or without IRF-E sites. As a conclusion, A3G are expressed in normal human liver. A3G expression was up-regulated by IFN-α stimulation in hepatoma cells and could be involved in host defense mechanisms against HBV. IRF-E site in 5' region of APOBEC3G gene upstream the initiation codon plays an important role in this process.展开更多
AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (...AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry, immunocyto- chemistry, reverse transcription polymerase chain reac- tion and functional assays. RESULTS: rFLDC exhibit fibroblastoid morphology, ex- press mesenchymal (CD73, CD90, vimentin, m-smooth muscle actin), hepatocyte (UGTIA1, CK8) and biliary (CK19) markers. Moreover, these cells are able to store glycogen, and have glucose 6 phosphatase activity, but not UGTIA1 activity. Under the hepatogenic differentia- tion protocol, rFLDC display an up-regulation of hepatocyte markers expression (albumin, tryptophan 2,3-di- oxygenase, G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19. CONCLUSION: Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC. However, we demonstrated the presence of an original rodent hepato-biliary cell type.展开更多
AIM: To investigate the anti-inflammatory properties of Lacto-Wolfberry (LWB), bothin vitro and using a mouse model of experimental colitis. METHODS: The effects of LWB on lipopolysaccharide (LPS)-induced reactive oxy...AIM: To investigate the anti-inflammatory properties of Lacto-Wolfberry (LWB), bothin vitro and using a mouse model of experimental colitis. METHODS: The effects of LWB on lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) and interleukin (IL)-6 secretion were assessed in a murine macrophage cell line. in vitro assessment also included characterizing the effects of LWB on the activation of NF-E2 related 2 pathway and inhibition of tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NFκB) activation, utilizing reporter cell lines. Following the in vitro assessment, the anti-inflammatory efficacy of an oral intervention with LWB was tested in vivo using a preclinical model of intestinal inflammation. Multiple outcomes including body weight, intestinal histology, colonic cytokine levels and anti-oxidative measures were investigated.RESULTS: LWB reduced the LPS-mediated inductionof ROS production [+LPS vs 1% LWB + LPS, 1590 ± 188.5 relative luminescence units (RLU) vs 389 ± 5.9 RLU, P < 0.001]. LWB was more effective than wolfberry alone in reducing LPS-induced IL-6 secretion in vitro (wolfberry vs 0.5% LWB, 15% ± 7.8% vs 64% ± 5%, P < 0.001). In addition, LWB increased reporter gene expression via the anti-oxidant response element activation (wolfberry vs LWB, 73% ± 6.9% vs 148% ± 28.3%, P < 0.001) and inhibited the TNF-α-induced activation of the NF-κB pathway (milk vs LWB, 10% ± 6.7% vs 35% ± 3.3%, P < 0.05). Furthermore, oral supplementation with LWB resulted in a reduction of macroscopic (-LWB vs +LWB, 5.39 ± 0.61 vs 3.66 ± 0.59, P = 0.0445) and histological scores (-LWB vs +LWB, 5.44 ± 0.32 vs 3.66 ± 0.59, P = 0.0087) in colitic mice. These effects were associated with a significant decrease in levels of inflammatory cytokines such as IL-1β (-LWB vs +LWB, 570 ± 245 μg/L vs 89 ± 38 μg/L, P = 0.0106), keratinocyte-derived chemokine/growth regulated protein-α (-LWB vs +LWB, 184 ± 49 μg/Lvs 75 ± 20 μg/L,P = 0.0244), IL-6 (-LWBvs +LWB, 318 ± 99 μg/L vs 117 ± 18 μg/L, P = 0.0315) and other pro-inflammatory proteins such as cyclooxygenase-2 (-LWB vs +LWB, 0.95 ± 0.12 AU vs 0.36 ± 0.11 AU, P = 0.0036) and phosphorylated signal transducer and activator of transcription-3 (-LWB vs +LWB, 0.51 ± 0.15 AU vs 0.1 ± 0.04 AU, P = 0.057). Moreover, antioxidant biomarkers, including expression of gene encoding for the glutathione peroxidase, in the colon and the plasma anti-oxidant capacity were significantly increased by supplementation with LWB (-LWB vs +LWB, 1.2 ± 0.21 mmol/L vs 2.1 ± 0.19 mmol/L, P = 0.0095).CONCLUSION: These results demonstrate the antiinflammatory properties of LWB and suggest that the underlying mechanism is at least in part due to NF-κB inhibition and improved anti-oxidative capacity.展开更多
Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods ...Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.展开更多
AIM:To investigate the inhibitory role of toxicarioside A on the gastric cancer cell line human gastric cancer cell line(SGC-7901) and determine the underlying molecular mechanism.METHODS:After SGC-7901 cells were tre...AIM:To investigate the inhibitory role of toxicarioside A on the gastric cancer cell line human gastric cancer cell line(SGC-7901) and determine the underlying molecular mechanism.METHODS:After SGC-7901 cells were treated with toxicarioside A at various concentrations(0.5,1.5,4.5,9.0 μg/mL) for 24 h or 48 h,cell viability was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl2H-tetrazolium bromide assay,and the motility and invasion of tumor cells were assessed by the Transwell chamber assay.Immunofluorescence staining,reverse transcription polymerase chain reaction and Western blotting were performed to detect the expression of basic fibroblast growth factor(bFGF) and fibroblast growth factor receptor-1(FGFR1),and nuclear factorkappa B(NF-κB) activation was examined by electrophoretic mobility shift assay.RESULTS:The results showed that toxicarioside A was capable of reducing cell viability,inhibiting cell growth,and suppressing cell migration and invasion activities in a time-and dose-dependent manner in SGC-7901 cells.Further analysis revealed that not only the expression of bFGF and its high-affinity receptor FGFR1 but also the NF-κB-DNA binding activity were effectively blocked by toxicarioside A in a dose-dependent manner compared with the control group(P < 0.05 or P < 0.01).Interestingly,application of the NF-κB specific inhibitor,pyrrolidinedithiocarbamate(PDTC),to SGC-7901 cells significantly potentized the toxicarioside A-induced down-regulation of bFGF compared with the control group(P < 0.05).CONCLUSION:These findings suggest that toxicarioside A has an anti-gastric cancer activity and this effect may be achieved partly through down-regulation of NF-κB and bFGF/FGFR1 signaling.展开更多
Hypoxia-inducible factor-1(HIF-1)is a key heterodimeric transcription factor for the cellular adaptive response to hypoxia,a common feature of the microenvironment in solid tumors.The transcriptional activity,protein ...Hypoxia-inducible factor-1(HIF-1)is a key heterodimeric transcription factor for the cellular adaptive response to hypoxia,a common feature of the microenvironment in solid tumors.The transcriptional activity,protein stabilization,protein-protein interactions and cellular localization of HIF-1α,an oxygen-sensitive subunit of HIF-1,are mainly modulated by various post-translational modifications.Recently,we reported that polycomb chromobox 4(Cbx4)governs the transcriptional activity of HIF-1αby enhancing its sumoylation at K391 and K477,through which Cbx4 potentiates angiogenesis of hepatocellular carcinoma.This review summarizes the current knowledge of HIF-1α sumoylation and its roles in the pathogenesis of cancer.展开更多
Quantitative analysis of interactions between small molecules and proteins is a central challenge in chemical genetics, molecular diagnostics and drug developments. Here, we developed a RNA transcription nanomachine b...Quantitative analysis of interactions between small molecules and proteins is a central challenge in chemical genetics, molecular diagnostics and drug developments. Here, we developed a RNA transcription nanomachine by assembling T7 RNA polymerase on a small molecule-labeled DNA heteroduplex. The nanomachine, of which the RNA transcription activity can be quantitatively inhibited by protein binding, showed a great potential for small molecule-protein interaction assay. This finding enabled us to develop a novel homogeneous label-free strategy for assays of interactions between small molecules and their protein receptors. Three small molecule compounds and their protein receptors have been used to demonstrate the developed strategy. The results revealed that the protein-small molecule interaction assay strategy shows dynamic responses in the concentration range from 0.5 to 64 nM with a detection limit of 0.2 nM. Due to its label-free, homogeneous, and fluorescence-based detection format, besides its desirable sensitivity this technique could be greatly robust, cost-efficient and readily automated, implying that the developed small molecule-protein interaction assay strategy might create a new methodology for developing intrinsically robust, sensitive and selective platforms for homogeneous protein detection.展开更多
文摘LEF1/TCFs are high mobility group box-containing transcriptional factors mediating canonical Wnt/β-catenin signaling during early embryogenesis and tumorigenesis. β-Catenin forms a complex with LEF 1/TCFs and transactivates LEF1/TCF-mediated transcriptions during dorsalization. Although LEF-mediated transcription is also implicated in ventralization, the underlying molecular mechanism is not well understood. Using the vertebrate Xenopus laevis model system, we found that Xom, which is a ventralizing homeobox protein with dual roles of transcriptional activation and repression, forms a complex with LEF 1/TCF through its homeodomain and transactivates LEF 1/TCF-mediated transcription through its N-terminal transactivation domain (TAD). Our data show that Xom lacking the N-terminal TAD fails to transactivate ventral genes, such as BMP4 and Xom itself, but retains the ability to suppress transcriptional activation of dorsal gene promoters, such as the Goosecoid promoter, indicating that transactivation and repression are separable functions of Xom. It has been postulated that Xom forms a positive re-enforcement loop with BMP4 to promote ventral- ization and to suppress dorsal gene expression. Consistent with an essential role of Xom transactivation of LEF1/TCFs during early embryogenesis, we found that expression of the dominant-negative Xom mutant that lacks the TAD fails to re-enforce the ventral signaling of BMP4 and causes a catastrophic effect during gastrulation. Our data suggest that the functional interaction of Xom and LEF 1/TCF-factors is essential for ventral cell fate determination and that LEF 1/TCF factors may function as a point of convergence to mediate the combined signaling of Wnt/β-catenin and BMP4/Xom pathways during early embryogenesis.
基金The National "973" (2005CB523201)Key Technology R&D Programme (2006BAD06A03)
文摘E2 is an envelope glycoprotein of Classical swine fever virus (CSFV) and contains sequential neutralizing epitopes to induce virus-neutralizing antibodies and mount protective immunity in the natural host. In this study, four antigen domains (ABCD) of the E2 gene was cloned from CSFV Shimen strain into the retroviral vector pBABE puro and expressed in eukaryotic cell (PK15) by an retroviral gene expression system, and the activity of recombinant E2 protein to induce immune responses was evaluated in rabbits. The results indicated that recombinant E2 protein can be recognized by fluorescence antibodies of CSFV and CSFV positive serum (Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China) using Western blot, indirect immunofluorescence antibody test (IFAT) and ELISA, Furthermore, anti-CSFV specific antibodies and lymphocyte proliferation were elicited and increased by recombinant protein after vaccination. In the challenge test, all of rabbits vaccinated with recombinant protein and Chinese vaccine strain (C-strain) were fully protected from a rabbit spleen virus challenge. These results indicated that a retroviral-based epitope-vaccine carrying the major antigen domains of E2 is able to induce high level of epitope-specific antibodies and exhibits similar protective capability with that induced by the C-strain, and encourages further work towards the development of a vaccine against CSFV infection.
文摘Although male and female pronuclei reside in the same zygotic cytoplasm, they differ in many respects, such asvolume and transcriptional activity. The aim of this study is to investigate whether these differences are lost during thefirst mitosis. For this purpose, a new method was developed to inhibit the mixing of two parental chromosomes duringmitosis, thus to induce the formation of two nuclei after they exit from the mitotic phase. In this method, one-cellembryos are arrested at metaphase by treatment with nocodazole, and whn exitting from the mitotic phase, two nucleiwere formed in a single karyocyte following treatment with 6-dimethylaminopurine (6-DMAP). These embryos weredesignated as post-mitotic embryos (PM-embryos), in which the two nuclei were derived from the male and femalegenomes. We found that in the control one-cell embryos that had not been treated with the reagents, the volume of themale pronucleus was about 1.65-fold greater than that of the female pronucleus, whereas the volumes of the two nucleiin the PM-embryos were similar (volume ratio of 1.01). Although a two-fold difference in transcriptional activity wasdetected between the male and female pronuclei in the control embryos, no difference in transcriptional activity wasdetected between the two nuclei of PM-embryos. The ratio of transcriptional activity in the nucleus derived from thepaternal genome to that from the maternal genome was 1.02, for which no significant difference was detected by the χ2fitness test. Therefore, the volumes and transcriptional activities of the male and female nuclei were approximately equalin PM-embryos, which suggests that the asymmetries of pronuclear volume and transcriptional activity between maleand female genomes are somehow losted during the first mitosis.
基金Supported by the Major State Basic Research Development Program of China (2005CB522602)the National Funds for Outstanding Youth Scientists (30325040)
文摘Objective:To investigate the effects of -2242,-1892 and -1837 single nucleotide polymorphisms(SNPs) on toll-like receptor 4(TLR4) promoter activity.Methods:Polymerase chain reaction(PCR) and site direct mutation technology were used to construct TLR4 basic promoter and -2242C,-1892A and -1837G mutate promoter plasmids.Dual-Luciferase Reporter assay system was used to detect the activity of constructed promoter following human embryonic kidney(HEK) 293 cells were transiently cotransfected with the constructed plasmids and the control plasmid pRL-CMV.Results:In HEK293 cells,the activity of -2242C mutate promoter was higher than -2242T promoter,and there was no significant difference when both -1892A and -1837G mutate promoter compared with -1892G and -1837A promoter,respectively.Conclusion:It is implied that -2242T→C base variation can enhance the activity of TLR4 promoter,while -1892 and -1837 SNPs have no effect on TLR4 promoter activity.
基金Supported by grants from the Natural Science Foundation of Shanxi Province, National Natural Science Foundation,and University Technology Development Project of Shanxi Province, China
文摘Objective:The aim of the study was to examine the effect of Sp1 on the expression of the human telomerase reverse transcriptase(hTERT) gene in human colorectal carcinoma SW480 cells.Methods:The Sp1 shRNA plasmid was transfected into colorectal carcinoma SW480 cells line by liposome mediation for transient expression.After Sp1 shRNA plasmid transfected SW480 cells,the exogenous Sp1 protein expression was determined by the method of Western blot.At same time,hTERT mRNA expression was detected by RT-PCR,telomerase activity was determined by the telomeric repeat amplification protocol(TRAP) assay,and the apoptotic rate of cells was also tested by flow cytometry.Results:The protein expressions of Sp1 gene could be reduce by transfecting of pGenesil-1-Sp1(+) recombinant plasmid into SW480 cells.The apoptotic rate was increased compared with pGenesil-1-Sp1(-)/SW480 and SW480(P < 0.05),which indicated that lowexpression of Sp1 gene could lead to low level of telomerase activity and induce apoptosis.Conclusion:Silencing Sp1 may suppress the activity of telomerase by inhabiting hTERT gene expression.
基金This work was supported by the National Natural Science Foundation of China(No.39870285,No.0070342).
文摘Signal transducer and activator of transcription 3 (STAT3) is a recently characterized transcription factor which is essential to liver regeneration. We have previously reported that hepatic stimulator substance (HSS), a novel growthpromoting substance, phosphorylated the epidermal growth factor (EGF) receptors and activated downstream RasMAP kinase (extracellular signal-regulated kinases, ERK1/2) cascade. However, whether HSS signal is related to STAT3pathway remains unclear. The present study is aiming to explore the regulatory effect of activation of ERK1/2 evoked by HSS on STAT3 phosphorylation and STAT3 signaling. Human hepatoma cell line HepG2 was stably transfected with HSS cDNA and HSS expression was measured by Northern blot. The results showed that the transfection of HSS into HepG2 resulted in remarkable increase in cellular proliferation as compared with the non-transfected cells, and it was further proved that the cellular proliferation in the HSS-transfected cells was related to ERK1/2 activation. Treatment of the cells with 50 μM of PD98059, an ERK1/2 specific upstream inhibitor, resulted in ERK1/2 inactivation completely.Inhibition of ERK1/2 allowed the tyrosine of STAT3 to be phosphorylated in a dose-dependent manner to PD98059.Furthermore, transient transfection of STAT3 mutant (STAT3S727A) into HSS-bearing cells could remarkably reverse the inhibitory effect of ERK1/2 on STAT3 phosphorylation. Based upon these results, it is concluded that ERK1/2negatively modulates STAT3 phosphorylation and this function is dependent on residual serine-727 (S727) of STAT3.
基金Shandong Science Development FundGrant number:041120101
文摘Extracting characteristic brain signals and simultaneous recording animals behaving could help us to understand the complex behavior of neuronal ensembles. Here, a system was established to record local field potentials (LFP) and extracellular signal or multiple-unit discharge and behavior synchronously by utilizing electrophysiology and integrated circuit technique. It comprised microelectrodes and micro-driver assembly, analog front end (AFE),while a computer (Pentium III ) was used as the platform for the graphic user interface, which was developed using the LabVIEW programming language. It was designed as a part of ongoing research to develop a portable wireless neural signal recording system. We believe that this information will be useful for the research of brain-computer interface.
基金Supported by Grants from the National Natural Sciences Foundation of China,No.30870919Sichuan Provincial Department of Science and Technology,No.2010SZ0176
文摘AIM: TO investigate the effects of the somatostatin analogue, octreotide, on maltose and sucrase activities and expression of glucose transporter type 2 (GLUT2) in obese rat intestinal mucosa. METHODS: We divided 49 Sprague-Dawley rats into a group of 31 high fat diet-induced obese rats and a group of 18 normal controls. The obese rats were separated into an octreotide treated group 9f 16 rats and an obese group of 15. The intervention (:jroup was injected with octreotide at 40 ±g/kg body weight every 12 h for 8 d. Rat body weight was measured weekly to calculate Lee's index. After euthanization, maltase and sucrase activities in the small intestine were measured by activity assays, and the fasting plasma glucose level was measured. The expression of GLUT2 in small intestinal mucosa was analyzed by immunohistochemistry, reverse transcriptase polymerase chain reaction and Western blotting assays. RESULTS: Body weight, Lee's index, fasting plasma glucose level, maltase activity in small intestinal mucosa, mucosa and apical GLUT2, GLUT2 mRNA and protein expression levels were all significantly higher in the obese group than in the normal control group (605.61 ± 141.00 vs 378.54 ±111.75, 337.61 ± 10.82 vs 318.73 ± 20.10, 8.60± 1.38 vs 7.33 ± 0.70, 156.01 ± 58.81 vs 50.43 ± 30.49, 390 744.2± 62 469.21 vs 170 546.50 ± 50 646.14, 26 740.18 ±3809.60 vs 354.98± 57.19, 0.26± 0.11 vs 0.07± 0.02, and 2.08 ± 0.59 vs 1.27 ± 0.38, respectively, all P 〈 0.01). Sucrase activity did not differ between the two groups. Octreotide intervention significantly decreased the body weight and fasting plasma glucose level of obese rats (508.27 ± 94.39 vs 605.61 ± 141.00, 7.58 ± 1.51 vs 8.60±1.38, respectively, all P 〈 0.05). The intestinal mucosa and apical GLUT2, expression of GLUT2 mRNA and protein were also significantly lower in the octreotide intervention group than in the obese group (269 975.2 ± 53 730.94 vs 390 744.2 ± 62 469.21, 3758.06 ± 364.51 vs 26 740.18 ± 3809.60, 0.08 ± 0.02 vs 0.26 ±0.11, and 1.31 ± 0.27 vs 2.08 ±0.59, respectively, all P 〈 0.01). CONCLUSION: High fat dietinduced obesity is associated with elevated intestinal maltase activity, GLUT2 expression, and permanent apical GLUT2 in the small intestinal mucosa of rats. Octreotide can inhibit these effects.
基金Supported by National Natural Science Foundation of China, Grant, No. 30571833Natural Science Foundation of Guangdong Province, 05001785China Postdoctoral Science Foundation 20100470963
文摘AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer. METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditionedmedium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RTPCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay. RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA binding activity was also markedly decreased by EGCG. Furthermore, EGCG inhibited IL-6 induced vascular endothelial cell proliferation and tube formation in vitro and angiogenesis in vitro . CONCLUSION: EGCG inhibits IL-6-induced VEGF expression and angiogenesis via suppressing Stat3 activity in gastric cancer, which has provided a novel mechanistic insight into the anti-angiogenic activity of EGCG.
基金Supplementary information is linked to the online version of the paper on the Cell Research website.Acknowledgments We thank Anning Lin (The University of Chicago) for the critical reading of the paper, members in the Chen lab for technical help, the cell biology and molecular biology core facilities for confocal study and Q-PCR, and Shanghai Biochip Co Ltd. for microarray analysis. The H3K27me2 antibody was kindly provided by Li Tang (Fudan University) and Thomas Jenuwein (Research Institute of Molecular Pathology, The Vienna Biocenter). This work was supported by the National Basic Research Program of China (2007CB957900, 2006CB943902, 2007CB947101, 2008KR0695, 2009CB941100, 2005CB522704), the Chinese Academy of Sciences (KSCX2-YW-R-04), the National Natural Science Foundation of China (90919026, 30870538,30623003, 30721065, 30830034, 90919046), the Shanghai Pujiang Program (0757S11361), the Shanghai Key Project of Basic Science Research (06DJ14001, 06DZ22032, 08DJ1400501), and the Council of Shanghai Municipal Government for Science and Technology (088014199).
文摘Dimethylations of histone H3 lysine 9 and lysine 27 are important epigenetic marks associated with transcription repression. Here, we identified KIAA1718 (KDM7A) as a novel histone demethylase specific for these two repressing marks. Using mouse embryonic stem cells, we demonstrated that KIAA1718 expression increased at the early phase of neural differentiation. Knockdown of the gene blocked neural differentiation and the effect was rescued by the wild-type human gene, and not by a catalytically inactive mutant. In addition, overexpression of KIAA1718 accelerated neural differentiation. We provide the evidence that the pro-neural differentiation effect of KDM7A is mediated through direct transcriptional activation of FGF4, a signal molecule implicated in neural differentiation. Thus, our study identified a dual-specificity histone demethylase that regulates neural differentiation through FGF4.
基金supported by Major Science and Technology Special Projects (2009 ZX09301)
文摘Since the introduction of antiretroviral therapy (ART), the lifespan and quality of life of patients infected with HIV have been significantly improved. But treatment efficacy was compromised eventually by the development of resistance to antiretroviral drugs, and more new anti-HIV drugs with lower toxicity and higher activity were needed. Based on the experience and lessons learned from the treatment in the developed countries, US FDA suggested that more pharmacodynamical researches should be considered ahead of the clinical trials. To facilitate the anti-HIV drug research and development, we reviewed a few specialized issues that should be focused on drug evaluations in vitro, including: 1) Mechanism of action studies, demonstrating the candidate drug's efficacy to specifically inhibit viral replication or a virus-specific function and confirm the drug target. 2) Drug resistance studies, selecting the drug-resistant variants in vitro and determining the activities inhibiting HIV isolates resistant to approved antiretroviral drugs of the same class. 3) Antiviral activity in vitro in the presence of serum proteins, ascertaining whether an investigational product is significantly bound by serum proteins. 4) Combination activity analysis, evaluating in vitro antiviral activity of an investigational product in two-drug combinations with other drugs approved.
文摘To clarify the role of APOBEC3G (A3G) in cellular defense against hepatitis B virus (HBV), the expression of A3G in normal human liver and the regulation of the A3G expression in hepatoma cell line (HuH-7) were investigated. Expression level of APOBEC3s mRNA in human liver was determined by RT-PCR. HuH-7 and HepG2 cells were treated with various concentrations of IFN-α(0 U/ml, 100 U/ml, 500 U/ml, 1000 U/ml)for 12 h. The mRNA levels were measured by a quantitative RT-PCR, the results were normalized relative to the specimens without IFN-α stimulation. Total protein of HuH-7 cells treated with various concentrations of IFN-α for 48 h was subjected to Western blot analysis. For reporter gene assay, HuH-7 cells were transfected with the reporter plasmids containing IRF- E sites and its mutants with different lengths. Then the cells were treated with or without 1200 U/ml IFN-α for additional 12 h ( 1000 U/ml) after 24 h of transfection, and the cell lysate was prepared and assayed for lueiferase activity. It was found that normal human liver expressed the rnR_NA of A3G. A3G mRNA expression in HuH-7 and HepG2 cells were up-regulated by IFN-α stimulation in a dose-depen- dent manner. Western blot analysis indicated that A3G protein expression was also enhanced by IFN-α stimulation. Sequence analysis showed the existence of putative sites of IFN regulatory factor element (IRF-E) in 5' region of A3G gene upstream the initiation eodon. IFN-α stimulation results in 6- to 8- fold increase in lueiferase activity in cells transfeeted with the plasmid containing IRF-E sites of the 5' upstream sequences, whereas luciferase activity did not change in cells transfected with the plasmid containing mutant IRF-E sites or without IRF-E sites. As a conclusion, A3G are expressed in normal human liver. A3G expression was up-regulated by IFN-α stimulation in hepatoma cells and could be involved in host defense mechanisms against HBV. IRF-E site in 5' region of APOBEC3G gene upstream the initiation codon plays an important role in this process.
基金Supported by Fonds pour la formation à la recherche dans l’industrie et dans l’agriculture (FRIA)
文摘AIM: To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent ad- vanced hepatogenic profile as that obtained in humans. METHODS: Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry, immunocyto- chemistry, reverse transcription polymerase chain reac- tion and functional assays. RESULTS: rFLDC exhibit fibroblastoid morphology, ex- press mesenchymal (CD73, CD90, vimentin, m-smooth muscle actin), hepatocyte (UGTIA1, CK8) and biliary (CK19) markers. Moreover, these cells are able to store glycogen, and have glucose 6 phosphatase activity, but not UGTIA1 activity. Under the hepatogenic differentia- tion protocol, rFLDC display an up-regulation of hepatocyte markers expression (albumin, tryptophan 2,3-di- oxygenase, G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19. CONCLUSION: Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC. However, we demonstrated the presence of an original rodent hepato-biliary cell type.
文摘AIM: To investigate the anti-inflammatory properties of Lacto-Wolfberry (LWB), bothin vitro and using a mouse model of experimental colitis. METHODS: The effects of LWB on lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) and interleukin (IL)-6 secretion were assessed in a murine macrophage cell line. in vitro assessment also included characterizing the effects of LWB on the activation of NF-E2 related 2 pathway and inhibition of tumor necrosis factor-α (TNF-α)-induced nuclear factor-κB (NFκB) activation, utilizing reporter cell lines. Following the in vitro assessment, the anti-inflammatory efficacy of an oral intervention with LWB was tested in vivo using a preclinical model of intestinal inflammation. Multiple outcomes including body weight, intestinal histology, colonic cytokine levels and anti-oxidative measures were investigated.RESULTS: LWB reduced the LPS-mediated inductionof ROS production [+LPS vs 1% LWB + LPS, 1590 ± 188.5 relative luminescence units (RLU) vs 389 ± 5.9 RLU, P < 0.001]. LWB was more effective than wolfberry alone in reducing LPS-induced IL-6 secretion in vitro (wolfberry vs 0.5% LWB, 15% ± 7.8% vs 64% ± 5%, P < 0.001). In addition, LWB increased reporter gene expression via the anti-oxidant response element activation (wolfberry vs LWB, 73% ± 6.9% vs 148% ± 28.3%, P < 0.001) and inhibited the TNF-α-induced activation of the NF-κB pathway (milk vs LWB, 10% ± 6.7% vs 35% ± 3.3%, P < 0.05). Furthermore, oral supplementation with LWB resulted in a reduction of macroscopic (-LWB vs +LWB, 5.39 ± 0.61 vs 3.66 ± 0.59, P = 0.0445) and histological scores (-LWB vs +LWB, 5.44 ± 0.32 vs 3.66 ± 0.59, P = 0.0087) in colitic mice. These effects were associated with a significant decrease in levels of inflammatory cytokines such as IL-1β (-LWB vs +LWB, 570 ± 245 μg/L vs 89 ± 38 μg/L, P = 0.0106), keratinocyte-derived chemokine/growth regulated protein-α (-LWB vs +LWB, 184 ± 49 μg/Lvs 75 ± 20 μg/L,P = 0.0244), IL-6 (-LWBvs +LWB, 318 ± 99 μg/L vs 117 ± 18 μg/L, P = 0.0315) and other pro-inflammatory proteins such as cyclooxygenase-2 (-LWB vs +LWB, 0.95 ± 0.12 AU vs 0.36 ± 0.11 AU, P = 0.0036) and phosphorylated signal transducer and activator of transcription-3 (-LWB vs +LWB, 0.51 ± 0.15 AU vs 0.1 ± 0.04 AU, P = 0.057). Moreover, antioxidant biomarkers, including expression of gene encoding for the glutathione peroxidase, in the colon and the plasma anti-oxidant capacity were significantly increased by supplementation with LWB (-LWB vs +LWB, 1.2 ± 0.21 mmol/L vs 2.1 ± 0.19 mmol/L, P = 0.0095).CONCLUSION: These results demonstrate the antiinflammatory properties of LWB and suggest that the underlying mechanism is at least in part due to NF-κB inhibition and improved anti-oxidative capacity.
基金Supported by National Natural Science Foundation of China (30871382,30721063)National Basic Research Program of China (973 Program) (2005CB522405)Special Funds of State Key Laboratories (2060204)
文摘Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.
基金Supported by Grants from the National Natural Scientific Foundation of China,No.81060184the Natural Foundation of Hainan Province of China,No. 30864,811201+2 种基金Program for New Century Excellent Talents in University of China,NCET-08-0657the National Basic Research Program of China,No.2010CB534909Hainan Provincial Key Scientific Project,No.061009
文摘AIM:To investigate the inhibitory role of toxicarioside A on the gastric cancer cell line human gastric cancer cell line(SGC-7901) and determine the underlying molecular mechanism.METHODS:After SGC-7901 cells were treated with toxicarioside A at various concentrations(0.5,1.5,4.5,9.0 μg/mL) for 24 h or 48 h,cell viability was determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl2H-tetrazolium bromide assay,and the motility and invasion of tumor cells were assessed by the Transwell chamber assay.Immunofluorescence staining,reverse transcription polymerase chain reaction and Western blotting were performed to detect the expression of basic fibroblast growth factor(bFGF) and fibroblast growth factor receptor-1(FGFR1),and nuclear factorkappa B(NF-κB) activation was examined by electrophoretic mobility shift assay.RESULTS:The results showed that toxicarioside A was capable of reducing cell viability,inhibiting cell growth,and suppressing cell migration and invasion activities in a time-and dose-dependent manner in SGC-7901 cells.Further analysis revealed that not only the expression of bFGF and its high-affinity receptor FGFR1 but also the NF-κB-DNA binding activity were effectively blocked by toxicarioside A in a dose-dependent manner compared with the control group(P < 0.05 or P < 0.01).Interestingly,application of the NF-κB specific inhibitor,pyrrolidinedithiocarbamate(PDTC),to SGC-7901 cells significantly potentized the toxicarioside A-induced down-regulation of bFGF compared with the control group(P < 0.05).CONCLUSION:These findings suggest that toxicarioside A has an anti-gastric cancer activity and this effect may be achieved partly through down-regulation of NF-κB and bFGF/FGFR1 signaling.
基金supported by grants from the National Natural Science Foundation of China (91213304,31101044)the National Basic Research Program of China (NO2009CB918404)+1 种基金Shanghai Science & Technology Committee (11JC1406800)Shanghai Committee of Education and Doctoral Innovation Fund Projects from Shanghai Jiao Tong University School of Medicine
文摘Hypoxia-inducible factor-1(HIF-1)is a key heterodimeric transcription factor for the cellular adaptive response to hypoxia,a common feature of the microenvironment in solid tumors.The transcriptional activity,protein stabilization,protein-protein interactions and cellular localization of HIF-1α,an oxygen-sensitive subunit of HIF-1,are mainly modulated by various post-translational modifications.Recently,we reported that polycomb chromobox 4(Cbx4)governs the transcriptional activity of HIF-1αby enhancing its sumoylation at K391 and K477,through which Cbx4 potentiates angiogenesis of hepatocellular carcinoma.This review summarizes the current knowledge of HIF-1α sumoylation and its roles in the pathogenesis of cancer.
基金supported by the National Natural Science Foundation of China (21025521, 21035001&20875027)the National Key Basic Re-search Program (2011CB911000)+3 种基金European Commission FP7-HEALTH-2010 Programme-GlycoHIT (260600)National Grand Program on Key Infectious Disease (2009ZX10004-312)Postdoctoral Science Foundation (20100480934) of ChinaChangjiang Scholars and Innovative Research Team in University Program and Natural Science Foundation of Hunan Province (10JJ7002)
文摘Quantitative analysis of interactions between small molecules and proteins is a central challenge in chemical genetics, molecular diagnostics and drug developments. Here, we developed a RNA transcription nanomachine by assembling T7 RNA polymerase on a small molecule-labeled DNA heteroduplex. The nanomachine, of which the RNA transcription activity can be quantitatively inhibited by protein binding, showed a great potential for small molecule-protein interaction assay. This finding enabled us to develop a novel homogeneous label-free strategy for assays of interactions between small molecules and their protein receptors. Three small molecule compounds and their protein receptors have been used to demonstrate the developed strategy. The results revealed that the protein-small molecule interaction assay strategy shows dynamic responses in the concentration range from 0.5 to 64 nM with a detection limit of 0.2 nM. Due to its label-free, homogeneous, and fluorescence-based detection format, besides its desirable sensitivity this technique could be greatly robust, cost-efficient and readily automated, implying that the developed small molecule-protein interaction assay strategy might create a new methodology for developing intrinsically robust, sensitive and selective platforms for homogeneous protein detection.