The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) h...The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.展开更多
Following Jacobi's geometrization of Lagrange's least action principle, trajectories of classical mechanics can be characterized as geodesics on the configuration space M with respect to a suitable metric which is t...Following Jacobi's geometrization of Lagrange's least action principle, trajectories of classical mechanics can be characterized as geodesics on the configuration space M with respect to a suitable metric which is the conformal modification of the kinematic metric by the factor (U + h), where U and h are the potential function and the total energy, respectively. In the special case of 3-body motions with zero angular momentum, the global geometry of such trajectories can be reduced to that of their moduli curves, which record the change of size and shape, in the moduli space of oriented m-triangles, whose kinematic metric is, in fact, a Riemannian cone over the shape space M^*≌S^2 (1/2). In this paper, it is shown that the moduli curve of such a motion is uniquely determined by its shape curve (which only records the change of shape) in the case of h≠0, while in the special case of h = 0 it is uniquely determined up to scaling. Thus, the study of the global geometry of such motions can be further reduced to that of the shape curves, which are time-parametrized curves on the 2-sphere characterized by a third order ODE. Moreover, these curves have two remarkable properties, namely the uniqueness of parametrization and the monotonieity, that constitute a solid foundation for a systematic study of their global geometry and naturally lead to the formulation of some pertinent problems.展开更多
According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckl...According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckling in stiffened shells are investigated.Then,a more general description of generatrix shape is proposed,which can simply be expressed as a convex B-spline curve(controlled by four key points).An optimization framework of stiffened shells with a convex B-spline generatrix is established,with optimization objective being measured in terms of nominal collapse load,which can be expressed as a weighted sum of geometrically imperfect shells.The effectiveness of the proposed framework is demonstrated by a detailed comparison of the optimum designs for the B-spline and hyperbolic generatrix shapes.The decrease of imperfection sensitivity allows for a significant weight saving,which is particularly important in the development of future heavy-lift launch vehicles.展开更多
The linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three body problem depends on the mass parameter β = 27(m1m2 + m2m3 + m3m1)/(m1 + m2 + m3)2∈ [0,...The linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three body problem depends on the mass parameter β = 27(m1m2 + m2m3 + m3m1)/(m1 + m2 + m3)2∈ [0,9] and the eccentricity e ∈ [0,1).In this paper we use Maslov-type index to study the stability of these solutions and prove that the elliptic Lagrangian solutions is hyperbolic for β > 8 with any eccentricity.展开更多
The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model.Firstly,we do not use the contact binary evolution model.A comparison of the light curve i...The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model.Firstly,we do not use the contact binary evolution model.A comparison of the light curve is performed with and without the deformation caused by rotation and tides.It shows that the light curve presents many differences,especially on the bottom and top.Secondly,we adopt the contact binary model [Huang R Q,et al.Chin J Astron Astrophys,2007,7:235-244;Song H F,et al.Chin J Astron Astrophys,2007,7:539-550] and compute the theoretical light curve with and without rotational and tidal effects by studying three binary systems(with low-,intermediate-and high-mass components).The bottom and top of the theoretical light curves are discussed and compared to observations.The results show that taking into account the rotational effect has a better agreement with observations than without it.Therefore,the deformation of the light curve of contact binaries caused by rotation and tides is very important.Meanwhile,the rotational and tidal effect can advance the start of the semi-detached,contact phase and the time of mass-reversal.展开更多
OBJECTIVE:To test the accuracy of the distribution of reflective zones on the feet as proposed by William Fitzgerald using the spine and kidney receptors as reference points.METHODS:Spine and feet lengths were measure...OBJECTIVE:To test the accuracy of the distribution of reflective zones on the feet as proposed by William Fitzgerald using the spine and kidney receptors as reference points.METHODS:Spine and feet lengths were measured first along straight lines and then again,taking into consideration the anatomical curves.The spinal column was further measured with regard to its individual regions(cervical,thoracic,lumbar,sacrum-coccyx).Straight-line measurements were taken with the help of an anthropometer.Measurements that took into account all of the curves were performed with the opisometer(also known as a "map measurer").All the measurements were accurate to within 1 mm.The study subjects were a healthy,physically fit 16-year-old female student and a 53-year-old male office employee exposed to an average dose of physical exercise.RESULTS:The kidney receptor in the foot did not reflect onto the predetermined lumbar section of the spinal column as measured along the straight line or with regard to curves.Instead,in both subjects the kidney receptor reflected onto the thoracic spine.CONCLUSION:Te particular level of the spinal cord that innervates the given organ controls the distribution of receptors of individual organs in the foot.展开更多
基金Project(51304041) supported by the National Natural Science Foundation of ChinaProject(N100402015) supported by Fundamental Research Funds for the Central Universities of China+1 种基金Project(2012AA03A502) supported by the National High Technology Research and Development Program of ChinaProject supported by Program for Liaoning Innovative Research Team in University,China
文摘The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-I.IN (HNS-A), 18Cr-16Mn-I.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (I-INS-D) high nitrogen austenitic stainless steels was investigated. The results show that the "nose" temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 ℃, 60 s; 850 ℃, 45 s; 850 ℃, 60 s and 900 ℃, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The Z phase corresponding to a composition of Fe36Cr^2Mo10, is determined to be a body-centered cubic structure ofa=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.
文摘Following Jacobi's geometrization of Lagrange's least action principle, trajectories of classical mechanics can be characterized as geodesics on the configuration space M with respect to a suitable metric which is the conformal modification of the kinematic metric by the factor (U + h), where U and h are the potential function and the total energy, respectively. In the special case of 3-body motions with zero angular momentum, the global geometry of such trajectories can be reduced to that of their moduli curves, which record the change of size and shape, in the moduli space of oriented m-triangles, whose kinematic metric is, in fact, a Riemannian cone over the shape space M^*≌S^2 (1/2). In this paper, it is shown that the moduli curve of such a motion is uniquely determined by its shape curve (which only records the change of shape) in the case of h≠0, while in the special case of h = 0 it is uniquely determined up to scaling. Thus, the study of the global geometry of such motions can be further reduced to that of the shape curves, which are time-parametrized curves on the 2-sphere characterized by a third order ODE. Moreover, these curves have two remarkable properties, namely the uniqueness of parametrization and the monotonieity, that constitute a solid foundation for a systematic study of their global geometry and naturally lead to the formulation of some pertinent problems.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2014CB049000,2014CB046596)the National Natural Science Foundation of China(Grant Nos.11402049,11372062)+2 种基金the Project funded by China Postdoctoral Science Foundation(Grant No.2014M551070)the Fundamental Research Funds for Central University of China(Grant No.DUT14RC(3)028)the"111"Program(Grant No.B14013)
文摘According to previous studies,stiffened shells with convex hyperbolic generatrix shape are less sensitive to imperfections.In this study,the effects of generatrix shape on the performances of elastic and plastic buckling in stiffened shells are investigated.Then,a more general description of generatrix shape is proposed,which can simply be expressed as a convex B-spline curve(controlled by four key points).An optimization framework of stiffened shells with a convex B-spline generatrix is established,with optimization objective being measured in terms of nominal collapse load,which can be expressed as a weighted sum of geometrically imperfect shells.The effectiveness of the proposed framework is demonstrated by a detailed comparison of the optimum designs for the B-spline and hyperbolic generatrix shapes.The decrease of imperfection sensitivity allows for a significant weight saving,which is particularly important in the development of future heavy-lift launch vehicles.
基金supported by National Natural Science Foundation of China (Grant No.11131004)
文摘The linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three body problem depends on the mass parameter β = 27(m1m2 + m2m3 + m3m1)/(m1 + m2 + m3)2∈ [0,9] and the eccentricity e ∈ [0,1).In this paper we use Maslov-type index to study the stability of these solutions and prove that the elliptic Lagrangian solutions is hyperbolic for β > 8 with any eccentricity.
基金supported by the National Natural Science Foundation of China (Grant No.10933002)
文摘The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model.Firstly,we do not use the contact binary evolution model.A comparison of the light curve is performed with and without the deformation caused by rotation and tides.It shows that the light curve presents many differences,especially on the bottom and top.Secondly,we adopt the contact binary model [Huang R Q,et al.Chin J Astron Astrophys,2007,7:235-244;Song H F,et al.Chin J Astron Astrophys,2007,7:539-550] and compute the theoretical light curve with and without rotational and tidal effects by studying three binary systems(with low-,intermediate-and high-mass components).The bottom and top of the theoretical light curves are discussed and compared to observations.The results show that taking into account the rotational effect has a better agreement with observations than without it.Therefore,the deformation of the light curve of contact binaries caused by rotation and tides is very important.Meanwhile,the rotational and tidal effect can advance the start of the semi-detached,contact phase and the time of mass-reversal.
文摘OBJECTIVE:To test the accuracy of the distribution of reflective zones on the feet as proposed by William Fitzgerald using the spine and kidney receptors as reference points.METHODS:Spine and feet lengths were measured first along straight lines and then again,taking into consideration the anatomical curves.The spinal column was further measured with regard to its individual regions(cervical,thoracic,lumbar,sacrum-coccyx).Straight-line measurements were taken with the help of an anthropometer.Measurements that took into account all of the curves were performed with the opisometer(also known as a "map measurer").All the measurements were accurate to within 1 mm.The study subjects were a healthy,physically fit 16-year-old female student and a 53-year-old male office employee exposed to an average dose of physical exercise.RESULTS:The kidney receptor in the foot did not reflect onto the predetermined lumbar section of the spinal column as measured along the straight line or with regard to curves.Instead,in both subjects the kidney receptor reflected onto the thoracic spine.CONCLUSION:Te particular level of the spinal cord that innervates the given organ controls the distribution of receptors of individual organs in the foot.