In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was ...In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.展开更多
In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel...In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel,and two kinds of steels were investigated by this novel combined process.The newly designed process resulted in a sophisticated microstructure of a large amount of ferrite(about 5 m in diameter),martensite and a considerable amount of retained austenite for TRIP 780 steel.The ultimate tensile strength can reach about 1200 MPa with elongation above 16% for TRIP 780,that is much higher than the one solely treated by Q&P process.Tensile tests showed that both steels with the novel combined process achieved a good combination of strength and ductility,indicating that the new process is promising for the new generation of advanced high strength steels.展开更多
The growth of nanocrystal superlattices of 5 nm single domain Au nanocrystals at an air-toluene interface induces formation of well-defined thin films (300--400 nm) with large coherence lengths. High-resolution elec...The growth of nanocrystal superlattices of 5 nm single domain Au nanocrystals at an air-toluene interface induces formation of well-defined thin films (300--400 nm) with large coherence lengths. High-resolution electron microscopy showed that polyhedral holes (negative supracrystal) were formed on the nanocrystal superlattice surface. Formation of negative supracrystals is attributed to inclusion in the superlattice of organic molecules (dodecanethiol), which are present in concentrated zones at the air-toluene interface. The coexistence of two supracrystalline structures (bcc/fcc) is attributed to diffusion of dodecanethiol molecules resulting in a Bain deformation of the nanocrystal array.展开更多
文摘In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.
基金supported by the National Engineering Research Center of Advanced Steel Technology (NERCAST)the National Basic Research Program of China "973 Program" (Grant No. 2010CB630803)the National Natural Science Foundation of China (Grant No. 51174251)
文摘In this work,DIFT technology and Q&P process were combined in order to introduce ultrafine-grained ferrite into the matrix of martensite and retained austenite to develop a new kind of advanced high strength steel,and two kinds of steels were investigated by this novel combined process.The newly designed process resulted in a sophisticated microstructure of a large amount of ferrite(about 5 m in diameter),martensite and a considerable amount of retained austenite for TRIP 780 steel.The ultimate tensile strength can reach about 1200 MPa with elongation above 16% for TRIP 780,that is much higher than the one solely treated by Q&P process.Tensile tests showed that both steels with the novel combined process achieved a good combination of strength and ductility,indicating that the new process is promising for the new generation of advanced high strength steels.
文摘The growth of nanocrystal superlattices of 5 nm single domain Au nanocrystals at an air-toluene interface induces formation of well-defined thin films (300--400 nm) with large coherence lengths. High-resolution electron microscopy showed that polyhedral holes (negative supracrystal) were formed on the nanocrystal superlattice surface. Formation of negative supracrystals is attributed to inclusion in the superlattice of organic molecules (dodecanethiol), which are present in concentrated zones at the air-toluene interface. The coexistence of two supracrystalline structures (bcc/fcc) is attributed to diffusion of dodecanethiol molecules resulting in a Bain deformation of the nanocrystal array.