The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (S...The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (Sa) presents a general sinusoid pattern. To study the mechanism of the variability, annual cycles of Sa were simulated and a theoretical analysis based on the governing equations was reported.Three main factors are responsible for the variability: the Yellow Sea Warm Current (YSWC), the Changji-ang (Yangtze) River diluted water (YRDW) and the evaporation minus precipitation (E-P). From December to the next May, the variability of Sa is mainly controlled by the salt transportation of the YSWC. But in early July, the YSWC is overtaken and replaced by the YRDW which then becomes the most important controller in summer. From late September to November, the E-P gradually took the lead. The mass exchange north of the 37癗 line is not significant.展开更多
The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.Th...A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.The components of ES forming die were manufactured and installed to Gleeble1500D thermo-mechanical simulator.The microstructure observations were carried out on the as-extruded rods(as-received) and ES formed rods.From the simulation results,ES forming can increase the cumulative strain enormously and the volume fraction of dynamic recrystallization.From the physical modeling results,the microstructures can be refined.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to p...A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.展开更多
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she...Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.展开更多
Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yush...Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yushu fault and the Margai Caka fault before the Kekexili Ms 8.1 earthquake with a 3-D elastic half-space dislocation model. The deformation field calculated from the slip movement of these faults can be considered the deformation background field of the earthquake. Based on the deformation background field with tectonic implications, we have obtained the strain field and earthquake moment accumulation field. The results show that there are two obvious high moment accumulation rate regions, one of which is the Dongdatan- Xidatan segment of the Eastern Kuniun fault where the Ms8.1 earthquake occurred in 2001.展开更多
在对细胞、生物大分子等柔软样品进行纳米操作时,原子力显微镜(atomic force microscope,AFM)面临缺乏实时视觉反馈的问题.为此,搭建了一套面向柔软样品的AFM纳米操作可视化系统.具体而言,首先建立了AFM形貌图像坐标系到虚拟场景坐标系...在对细胞、生物大分子等柔软样品进行纳米操作时,原子力显微镜(atomic force microscope,AFM)面临缺乏实时视觉反馈的问题.为此,搭建了一套面向柔软样品的AFM纳米操作可视化系统.具体而言,首先建立了AFM形貌图像坐标系到虚拟场景坐标系之间的映射关系,从而得到虚拟场景中样品的顶点信息,进而通过3维图形引擎渲染样品的虚拟形貌.在此基础上,提出了一种基于接触力学理论的样品形变估计和仿真方法,对探针按压导致的样品形变进行了虚拟视觉反馈,从而使得刻画的虚拟形貌能够和样品的真实形貌保持一致,并准确地还原按压过程中样品表面的形貌变化.仿真和实验结果表明,所设计的纳米操作可视化系统能够在虚拟场景中实时呈现AFM纳米操作过程.展开更多
In this paper,the rogue waves of the higher-order dispersive nonlinear Schrdinger(HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions...In this paper,the rogue waves of the higher-order dispersive nonlinear Schrdinger(HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method.The explicit first and secondorder rogue wave solutions are presented under the plane wave seeding solution background.The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions.The influence of little perturbation on the rogue waves is discussed with the help of graphical simulation.展开更多
文摘The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (Sa) presents a general sinusoid pattern. To study the mechanism of the variability, annual cycles of Sa were simulated and a theoretical analysis based on the governing equations was reported.Three main factors are responsible for the variability: the Yellow Sea Warm Current (YSWC), the Changji-ang (Yangtze) River diluted water (YRDW) and the evaporation minus precipitation (E-P). From December to the next May, the variability of Sa is mainly controlled by the salt transportation of the YSWC. But in early July, the YSWC is overtaken and replaced by the YRDW which then becomes the most important controller in summer. From late September to November, the E-P gradually took the lead. The mass exchange north of the 37癗 line is not significant.
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
基金Project(2007CB613700) supported by the National Basic Research Program of ChinaProject(2007BAG06B04) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period+1 种基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject(CSTC2009AB4008) supported by Chongqing Science and Technology Development Program,China
文摘A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.The components of ES forming die were manufactured and installed to Gleeble1500D thermo-mechanical simulator.The microstructure observations were carried out on the as-extruded rods(as-received) and ES formed rods.From the simulation results,ES forming can increase the cumulative strain enormously and the volume fraction of dynamic recrystallization.From the physical modeling results,the microstructures can be refined.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
文摘A model suitable for describing the mechanical response of thin elastic objects is proposed to simulate the deformation of guide wires in minimally invasive interventions. The main objective of this simulation is to provide doctors an opportunity to rehearse the surgery and select an optimal operation plan before the real surgery. In this model the guide wire is discretized with the multi-body representation and its elastic energy derivate from elastic theory is a polynomial function of the nodal displacements. The vascular structure is represented by a tetrahedron mesh extended from the triangular mesh of the artery, which can be extracted from the patient's CT image data. The model applies the energy decline process of the conjugate gradient method to the deformation simulation of the guide wire. Experimental results show that the polynomial relationship between elastic energy and nodal displacements tremendously simplifies the evaluation of the conjugate gradient method and significantly improves the model's efficiency. Compared with models depending on an explicit scheme for evaluation, the new model is not only non-conditionally stable but also more efficient. The model can be applied to the real-time simulation of guide wire in a vascular structure.
基金Projects(U1664252,51605234)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101700)supported by the National Key Research and Development Program of ChinaProject(31665004)supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.
基金sponsored by the National Natural Science Foundation (40674055),China
文摘Using the GPS velocity data from 27 stations around the Eastern Kunlun fault as constraints, we first invert the slip velocities of the Eastern Kuniun fault, the north boundary fault of the Qaidam basin, the Mani-Yushu fault and the Margai Caka fault before the Kekexili Ms 8.1 earthquake with a 3-D elastic half-space dislocation model. The deformation field calculated from the slip movement of these faults can be considered the deformation background field of the earthquake. Based on the deformation background field with tectonic implications, we have obtained the strain field and earthquake moment accumulation field. The results show that there are two obvious high moment accumulation rate regions, one of which is the Dongdatan- Xidatan segment of the Eastern Kuniun fault where the Ms8.1 earthquake occurred in 2001.
文摘在对细胞、生物大分子等柔软样品进行纳米操作时,原子力显微镜(atomic force microscope,AFM)面临缺乏实时视觉反馈的问题.为此,搭建了一套面向柔软样品的AFM纳米操作可视化系统.具体而言,首先建立了AFM形貌图像坐标系到虚拟场景坐标系之间的映射关系,从而得到虚拟场景中样品的顶点信息,进而通过3维图形引擎渲染样品的虚拟形貌.在此基础上,提出了一种基于接触力学理论的样品形变估计和仿真方法,对探针按压导致的样品形变进行了虚拟视觉反馈,从而使得刻画的虚拟形貌能够和样品的真实形貌保持一致,并准确地还原按压过程中样品表面的形貌变化.仿真和实验结果表明,所设计的纳米操作可视化系统能够在虚拟场景中实时呈现AFM纳米操作过程.
基金Supported by the National Natural Science Foundation of China under Grant No.11071164Innovation Program of Shanghai Municipal Education Commission under Grant Nos.12YZ105 and 13ZZ118+1 种基金the Foundation of University Young Teachers Training Program of Shanghai Municipal Education Commission under Grant No.slg11029the National Natural Science Foundation of China under Grant No.11171220
文摘In this paper,the rogue waves of the higher-order dispersive nonlinear Schrdinger(HDNLS) equation are investigated,which describes the propagation of ultrashort optical pulse in optical fibers.The rogue wave solutions of HDNLS equation are constructed by using the modified Darboux transformation method.The explicit first and secondorder rogue wave solutions are presented under the plane wave seeding solution background.The nonlinear dynamics and properties of rogue waves are discussed by analyzing the obtained rational solutions.The influence of little perturbation on the rogue waves is discussed with the help of graphical simulation.