We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial c...We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.展开更多
In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation fiel...In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.展开更多
The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurem...The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.展开更多
基金supported by the National Natural Science Foundation of China (No. 11102224)the Fundamental Research Funds for the Central Universities of China(No. 2009QL05)
文摘We investigated the combined influence of joint inclination angle and joint continuity factor on deforma- tion behavior of jointed rock mass for gypsum specimens with a set of non-persistent open flaws in uni- axial compression. Complete axial stress-strain curves were classified into four types, i.e., single peak, softening after multi-peak yield platform, hardening after multi-peak yield platform and multi-peak dur- ing softening. Observation of crack evolution on the specimen surface reveals that the deformation behavior is correlated to the closure of pre-existing joint, development of fractures in rock matrix and teeth shearing of the shear plane. To investigate the brittleness of the specimens, the ratio of the residual strength to the maximum peak strength as well as the first and last peak strains were studied. At the same joint inclination angle, the ratios between residual strength and the maximum peak strength and the last peak strains increased while the first peak strain decreased with the increase of joint continuity factor. At the same joint continuity factor, the curves of the three brittleness parameters vs. joint inclina- tion angle can either be concave or convex single-oeak or wave-shaoed.
基金supported by the Science and Technology Project of Shanxi Province(20140313023-1)the special earthquake research project of China Earthquake Administration(201208009)+1 种基金Natural Science Foundation of ShanxiChina(2011021024-1)
文摘In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.
基金sponsored by the Earthquake Science Foundation of Xinjiang,China(201302)
文摘The Yutian earthquake with M_S7.3 happened on February 12,2014. The precursor monitoring ability is weak in that area. We found tendency anomalies and middle- and short-term anomalies from metal pendulum tilt measurements in Hotan seismic station before the earthquake. And we also compared the anomalies with that of the M_S7.3 Yutian earthquake on March 21,2008. The tendency anomalies measured by the metal pendulum tiltmeter appeared since 2012 as tilting eastward. While the middle- and short-term anomalies were characterized by acceleration,pause and rapid change of tilt rate in two directions. The tendency anomalies of metal pendulum tilt records are the same before the two earthquakes. They both happened in the east direction. However,there are differences in duration,characteristic and earthquake intervals for the middle- and short-term anomalies.