The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic t...The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic tension-compression deformation tests. The plastic behavior of the extruded alloys with compositions of Mg99.2Zn0.2Y0.6 and Mg89Zn4Y7 (molar fraction, %), which were almost the same compositions of Mg matrix phase and LPSO phase in Mg97Zn1Y2 Mg/LPSO two-phase alloy, respectively, were also prepared. By comparing their mechanical properties, the strengthening mechanisms operating in the Mg97Zn1 Y2 extruded alloy were discussed. Existence of the LPSO-phase strongly enhanced the refinement of Mg matrix grain size during extrusion, which led to a large increment of the strength of alloy. In addition, the LPSO-phases, which were aligned along the extrusion direction in Mg97Zn1Y2 extruded alloy, acted as hardening phases, just like reinforced fibers.展开更多
Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength ...Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.展开更多
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T...In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compres...A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.展开更多
The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show tha...The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show that full length recoverable resin metal bolts can be used for supporting the walls of class Ⅰ~Ⅲ mining gateways, that the anchoring force is 50 kN or so, and that the recoverability rate is more than 80%, thus the supporting effect is better than that of split set bolts.展开更多
The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and...The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.展开更多
High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperat...High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.展开更多
A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the non...A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.展开更多
Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In ...Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.展开更多
基金supported by the project"Development of Key Technology for Next-generation Heat-resistant Magnesium Alloys,Kumamoto Prefecture Collaboration of Regional Entities for the Advancement of Technological Excellence"from Japan Science and Technology Agencyby funds from the"Priority Assistance of the Formation of Worldwide Renowned Centers of Research-The 21st Century COE Program and Global COE Program(Project:Center of Excellence for Advanced Structural and Functional Materials Design)"a Grant-in-Aid for Scientific Research and Development from the Ministry of Education,Culture,Sports,Science and Technology of Japan
文摘The mechanical properties of the Mg97ZnlY2 extruded alloy containing the long-period stacking ordered phase, the so-called LPSO-phase, with a volume fraction of 24%-25%, were examined by compression tests and cyclic tension-compression deformation tests. The plastic behavior of the extruded alloys with compositions of Mg99.2Zn0.2Y0.6 and Mg89Zn4Y7 (molar fraction, %), which were almost the same compositions of Mg matrix phase and LPSO phase in Mg97Zn1Y2 Mg/LPSO two-phase alloy, respectively, were also prepared. By comparing their mechanical properties, the strengthening mechanisms operating in the Mg97Zn1 Y2 extruded alloy were discussed. Existence of the LPSO-phase strongly enhanced the refinement of Mg matrix grain size during extrusion, which led to a large increment of the strength of alloy. In addition, the LPSO-phases, which were aligned along the extrusion direction in Mg97Zn1Y2 extruded alloy, acted as hardening phases, just like reinforced fibers.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Program of China
文摘Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.
基金financially supported by the National Key Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.51474136 and 51474013)+1 种基金the Opening Project Fund of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (No.MDPC2013KF06)the Research Award Fund for the Excellent Youth of Shandong University of Science and Technology (No.2011KYJQ106)
文摘In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金Project(50825901)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProject(2009492011)supported by State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China+1 种基金Project(GH200903)supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering(Hohai University),ChinaProject(Y1090151)supported by Natural Science Foundation of Zhejiang Province,China
文摘A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.
文摘The paper introduces a kind of full length recoverable resin metal bolts, expounds its structural principle and stress features, and gives some instances in laboratory tests and underground tests. The results show that full length recoverable resin metal bolts can be used for supporting the walls of class Ⅰ~Ⅲ mining gateways, that the anchoring force is 50 kN or so, and that the recoverability rate is more than 80%, thus the supporting effect is better than that of split set bolts.
基金Project(08Y038) supported by Jiangsu Transportation Engineering Construction Bureau,China
文摘The main objective of this work is to propose new mixture response parameters and to compare correlations with rut depths and sensitivity of permanent deformation response parameters based on field extracted cores and lab-mixed duplicates. A new "mix-confined" test is developed and four new parameters for this test are proposed. Correlation coefficients with rut depths and coefficients of variation (sensitivity) are compared between the four new and two existing parameters. Some parameters are recommended to be used for the newly developed test. The results show that, newly developed test can capture the changes of permanent deformation of asphalt mixtures. Only one new parameter (D1 of Stephen Price model) and one existing parameter (flow number, Fn ) have strong correlations with rut depths of asphalt pavements (R2 greater than 0.7) and have relative small sensitivity (coefficient of variation, COV, less than 30%). For polymer modified asphalt mixtures, the parameter D1 rather than Fn should be used. These findings can be used to check the permanent deformation of asphalt mixture during the mix design.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(20060425)supported by the Scientific and Technological Research Key Lab Foundation of Liaoning Education Department,China
文摘High temperature tensile ductilities and deformation mechanisms of an extruded and rolled AZ31 Mg alloy were investigated.Elongation-to-failure tests were conducted under constant T-head velocity and constant temperatures ranging from 300℃ to 450℃.Strain-rate-change tests were conducted under varying strain rate from 5×10-5s-1to 2×10-2s-1and constant temperature from 300℃ to 450℃.Experimental results show that the maximum elongation of the AZ31 alloy with an average grain size of about 19μm is 117%at strain rate of 10- 3s-1 and temperature of 450℃.Stress exponent and activation energy were characterized to clarify the deformation mechanisms.The enhanced ductility is dominated by solute drag dislocation creep,and the major failure mechanism is cavity growth and interlinkage.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11675084 and 11435005Ningbo Natural Science Foundation under Grant No.2015A610159+1 种基金granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzwl1502sponsored by K.C.Wong Magna Fund in Ningbo University
文摘A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear φ4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Palnleve test shows the coupled KdV equation possesses Palnleve property. The Backlund transformations of the coupled KdV equation related to Palnleve property and residual symmetry are shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.50925104,11132006,51231005 and 51321003)the National Basic Research Program of China("973"Program)(Grant Nos.2010CB631003 and 2012CB619402)+1 种基金the support from the"111"Project of China(Grant No.B06025)JL also acknowledges the support by US National Science Foundation(Grant Nos.DMR-1240933 and DMR-1120901)
文摘Mechanical tests on small-volume materials show that in addition to the usual attributes of strength and ductility, the controlla- bility of deformation would be crucial for the purpose of precise plastic shaping. In our present work, a "mechanical controlla- bility index" (MCI) has been proposed to assess the controllability of mechanical deformation quantitatively. The index allows quantitative evaluation of the relative fraction of the controllable plastic strain out of the total strain. MCI=0 means completely uncontrollable plastic deformation, MCI=∞ means perfectly controllable plastic shaping. The application of the index is demonstrated here by comparing two example cases: 0.273 to 0.429 for single crystal A1 nanopillars that exhibit obvious strain bursts, versus 3.17 to 4.2 for polycrystalline A1 nanopillars of similar size for which the stress-strain curve is smoother.