The deformation-induced textures in electrodeposited nickel coating were numerically studied. The finite element method (FEM) for polycrystalline was developed based on Taylor model. Then the deformation-induced textu...The deformation-induced textures in electrodeposited nickel coating were numerically studied. The finite element method (FEM) for polycrystalline was developed based on Taylor model. Then the deformation-induced textures in electrodeposited nickel coating with initial random and lamellar texture were simulated under tensile load. It is found that the initial textures significantly influence the deformation-induced textures. For nickel coating with the initial random textures, when the tensile strain is about 40%, there are some lamellar textures. For nickel coating with the initial lamellar textures, the lamellar texture is more intensity with the increase of the tensile strain. With the increase of the tensile strain in the coating, there are more pronounced element distortion and a more inhomogeneous deformation. Due to the different crystal orientations, the grain-scale roughness is observed. With increasing tensile strain in the coating, the surface grain-scale roughness increases on the free surface. The surface roughness of the coating with initial random texture is lower than that with the initial lamellar texture.展开更多
基金Project(104014) supported by Fok Ying Tong Education Foundation Project(05B008) supported by Scientific Research Fund of Education Department of Hunan Province, China
文摘The deformation-induced textures in electrodeposited nickel coating were numerically studied. The finite element method (FEM) for polycrystalline was developed based on Taylor model. Then the deformation-induced textures in electrodeposited nickel coating with initial random and lamellar texture were simulated under tensile load. It is found that the initial textures significantly influence the deformation-induced textures. For nickel coating with the initial random textures, when the tensile strain is about 40%, there are some lamellar textures. For nickel coating with the initial lamellar textures, the lamellar texture is more intensity with the increase of the tensile strain. With the increase of the tensile strain in the coating, there are more pronounced element distortion and a more inhomogeneous deformation. Due to the different crystal orientations, the grain-scale roughness is observed. With increasing tensile strain in the coating, the surface grain-scale roughness increases on the free surface. The surface roughness of the coating with initial random texture is lower than that with the initial lamellar texture.