期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
关于差分方程u_(n+r)=sum from i=1 to n+r a_iu_(n+r-i)+b_n的显示解 被引量:4
1
作者 杨继明 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第1期23-25,共3页
给出了差分方程un+r=∑n+ri=1aiun+r-i+bnui=cii=0,1,…,r-1{的一个显示解un=dn+∑ni=1dn-i∑k1+2k2+…+iki∑ij=1kj!∏ij=1akjj∏ij=1kj!
关键词 差分方程 显示解 形式幂线数
下载PDF
A Categorification of Quantum sl_2
2
作者 王娜 王志玺 +1 位作者 吴可 杨紫峰 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第7期37-45,共9页
In this paper, we categorify the algebra Uq(sl2) with the same approach as in [A. Lauda, Adv. Math. (2010), arXiv:math.QA/0803.3662; M. Khovanov, Comm. Algebra 11 (2001) 5033]. The algebra U =Uq(sl2) is obtai... In this paper, we categorify the algebra Uq(sl2) with the same approach as in [A. Lauda, Adv. Math. (2010), arXiv:math.QA/0803.3662; M. Khovanov, Comm. Algebra 11 (2001) 5033]. The algebra U =Uq(sl2) is obtained from Uq(sl2) by adjoining a collection of orthogonal idempotents 1λ,λ ∈ P, in which P is the weight lattice of Uq(sl2). Under such construction the algebra U is decomposed into a direct sum λ∈p 1λ,U1λ. We set the collection of λ∈ P as the objects of the category U, 1-morphisms from λ to λ′ are given by 1λ,U1λ, and 2-morphisms are constructed by some semilinear form defined on U. Hence we get a 2-category u from the algebra Uq(sl2). 展开更多
关键词 quantum affine algebra CATEGORIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部