设 T =(U BA 0)是形式三角矩阵环, 其中 A, B 是环, U 是 (B, A)-双模. 证明了当 T 是左n-凝聚环,UA是平坦模,BU 是有限生成投射模, M =(M 2 M 1 ) φM 是左 T-模,若 M1 是Gorenstein FPn 投射左A-模, M2/ImφM 是 Gorenstein FPn- 投射...设 T =(U BA 0)是形式三角矩阵环, 其中 A, B 是环, U 是 (B, A)-双模. 证明了当 T 是左n-凝聚环,UA是平坦模,BU 是有限生成投射模, M =(M 2 M 1 ) φM 是左 T-模,若 M1 是Gorenstein FPn 投射左A-模, M2/ImφM 是 Gorenstein FPn- 投射左 B-模,且 ϕM 是单同态,则 M 是 Gorenstein FPn-投射左 T -模. 进而: U ⊗A M1 是 Gorenstein FPn- 投射左 B-模,当且仅当, M2 是 Gorenstein FPn- 投射左 B-模.Let T =(U BA 0) be a formal triangular matrix ring, where A and B are rings and U is (B;A)-bimodule. It is proved that T is a left n-cocherent ring, UA is a at module, BU is a finitely generated projective module, M =(M 2 M 1 ) φM is a left T-module. If M1 is a Gorenstein FPn-projective left A-module, M2/ImφM is a Gorenstein FPn-projective left B-module and ϕM is injective. Then M is a Gorenstein FPn-projective left T-module. In this instance, U ⊗A M1 is a Gorenstein FPn-projective left B-module, if and only if, M2 is a Gorenstein FPn-projective left B-module.展开更多
设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T...设T=A 0 U B是形式三角矩阵环,其中A,B是环,U是(B,A)-双模.利用Hom函子和伴随同构等理论,刻画形式三角矩阵环T上的F-Gorenstein平坦模结构,并证明若BU的平坦维数有限,U A的平坦维数有限且对任意的余挠左A-模C,有U■AC是余挠左B-模,则左T-模M_(1)/M_(2)φ^(M)是F-Gorenstein平坦模当且仅当M_(1)是F-Gorenstein平坦左A-模,Cokerφ^(M)是F-Gorenstein平坦左B-模,且φ^(M):U■AM 1→M_(2)是单射.展开更多
令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内...令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内σ-双导子的和.此外,本文给出了K的任意σ-双导子(σ-交换映射)是内σ-双导子(真σ-交换映射)的一个充分条件.展开更多
基金supported by the National Natural Science Foundation of China(11161006,11171142)the Guangxi Natural Science Foundation(2011GXNSFA018139)Guangxi"new century 1000talents pleject"
文摘设 T =(U BA 0)是形式三角矩阵环, 其中 A, B 是环, U 是 (B, A)-双模. 证明了当 T 是左n-凝聚环,UA是平坦模,BU 是有限生成投射模, M =(M 2 M 1 ) φM 是左 T-模,若 M1 是Gorenstein FPn 投射左A-模, M2/ImφM 是 Gorenstein FPn- 投射左 B-模,且 ϕM 是单同态,则 M 是 Gorenstein FPn-投射左 T -模. 进而: U ⊗A M1 是 Gorenstein FPn- 投射左 B-模,当且仅当, M2 是 Gorenstein FPn- 投射左 B-模.Let T =(U BA 0) be a formal triangular matrix ring, where A and B are rings and U is (B;A)-bimodule. It is proved that T is a left n-cocherent ring, UA is a at module, BU is a finitely generated projective module, M =(M 2 M 1 ) φM is a left T-module. If M1 is a Gorenstein FPn-projective left A-module, M2/ImφM is a Gorenstein FPn-projective left B-module and ϕM is injective. Then M is a Gorenstein FPn-projective left T-module. In this instance, U ⊗A M1 is a Gorenstein FPn-projective left B-module, if and only if, M2 is a Gorenstein FPn-projective left B-module.
基金supported by NSFC(Nos.11661014,11461010,11661013)the Guangxi Science Research and Technology Development Project(No.1599005-2-13)+1 种基金the Guangxi Natural Science Foundation(Nos.2016GXSFDA380017,2016GXNSFCA380014)the Scientific Research Fund of Guangxi Education Department(No.KY2015ZD075)
基金Supported by NSFC (Nos.11661014,11661013,11961050)Guangxi Natural Science Foundation (No.2016GXSFDA380017)。
文摘令(R N M S)是一个具有零迹理想的形式矩阵环,σ是K的一个满足σ(E_(11))=E_(11),σ(E_(22))=E_(22)的自同构.本文确定了K的σ-双导子和σ-交换映射的一般形式,证明了在一定条件下K的每个σ-双导子都可以表示成一个外σ-双导子与一个内σ-双导子的和.此外,本文给出了K的任意σ-双导子(σ-交换映射)是内σ-双导子(真σ-交换映射)的一个充分条件.