期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lanelate脐橙花芽形态分化研究 被引量:4
1
作者 区善汉 李雁群 +5 位作者 麦适秋 梅正敏 刘升球 黄荣韶 邓光宙 张社南 《西南农业学报》 CSCD 北大核心 2009年第6期1670-1673,共4页
为探明Lanelate脐橙花芽分化规律,采用石蜡切片法观察其花芽的形态发生和结构发育过程,对各分化时期的特点进行研究。研究表明,在广西桂林地区气候条件下,Lanelate脐橙花芽分化从11月初花原基分化开始至次年3月雌雄蕊形成历时约5个... 为探明Lanelate脐橙花芽分化规律,采用石蜡切片法观察其花芽的形态发生和结构发育过程,对各分化时期的特点进行研究。研究表明,在广西桂林地区气候条件下,Lanelate脐橙花芽分化从11月初花原基分化开始至次年3月雌雄蕊形成历时约5个月。分化初期、萼片分化期历时长,分化较慢,其它时期历时短,分化较快。大部分花原基是在12月下旬至1月上旬,旬平均温度为10.1—9.7℃时形成;萼片原基主要在次年1月下旬,旬平均温度为1.4℃时形成;花瓣、雄蕊及雌蕊则在次年2—3月,月平均温度高于11.23℃时形成。 展开更多
关键词 Lanelate脐橙 花芽 形态分化过程 温度
下载PDF
Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary 被引量:17
2
作者 WEI QinSheng WANG BaoDong +3 位作者 CHEN JianFang XIA ChangShui QU DaPeng XIE LinPing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第4期628-648,共21页
On the basis of compiled multidisciplinary historical data in 2006-2007 and incorporation of relevant simulation results and re- mote sensing data, we performed an in-depth study of the generation and dissipation proc... On the basis of compiled multidisciplinary historical data in 2006-2007 and incorporation of relevant simulation results and re- mote sensing data, we performed an in-depth study of the generation and dissipation process of the hypoxic zone and its distribu- tion morphology and structure off the Yangtze River estuary, Based on the hydrological circulation dynamics, reproduction of phytoplankton (leading to the decomposition of organic matter), and other factors, we comprehensively and systematically inves- tigated the generation and dissipation of the hypoxic zone and underlying mechanisms for the seasonal variation in its position, explored the multi-factorial synergistic reactions during the generation and dissipation process of the hypoxic zone, and revealed the controlled mechanism for the morphology and structure of the hypoxic zone's distribution. Our studies indicate that in the winter and spring seasons, the hydrological environment off the Yangtze River estuary provides a water body with relatively low contents of dissolved oxygen (DO), which is the background for the formation of a hypoxic zone. After entering into the summer season, the hypoxic zone gradually develops towards the north and becomes mature. Because of the impact of the terrain, local decomposition of organic matter, and upwelling of the Kuroshio subsurface water in July-August, the bypoxic zone off the Yang- tze River estuary exhibits the characteristics of discontinuous distribution in space and has a south and north "dual-core" structure in the inner continental shelf. In addition, there is a hypoxic core in the eastern outer continental shelf. The degrees of hypoxia vary for different areas; they are strongest overall in the north, next strongest in the south; they are weakest on the outer continen- tal shelf. In summer, the hypoxic zone in the north is related to the northward differentiation of the southern hypoxic zone and re- sults from local development and intensification. In August, the hypoxic zone in the north reaches its peak, and after September, it rapidly retreats southward and disappears because of weakening stratification. In the fall, there is hypoxic zone along the coast of Zhejiang in the south, and there is also a low-DO area to the southwest of Jeju Island, with both zones disappearing rapidly. In addition, the change of dynamic environment also causes the low-DO area of the outer continental shelf to move outward in the fall. The variation in the intensity of the stratification and its cumulative effects as a barrier of vertical DO transportation over long pe- riods of time have a significant impact on the degree of hypoxia in the hypoxic zone. In addition, the seasonal variations in the size of the stratified region, intensity of each current system/water mass, upwelling, front, and high-value area of phytoplankton biomass jointly restrict the extension of the hypoxic zone in the inner continental shelf and latitudinal (south-north direction) movement of its location off the Yangtze River estuary. The combined effect of dynamic factors, such as that of the Kuroshio subsurface water, causes a low-DO core in the outer continental shelI: The bottom cold water to the north of the East China Sea is the dynamic basis for the formation of the low-DO area to the southwest of Jeju Island during the fall season. The special seabed to- pography and mud area distribution off the Yangtze River estuary have a certain degree of influence on the development of the hypoxic zone. The generation and dissipation of the hypoxic zone and its distribution morphology off the Yangtze River estuary, and seasonal variation of its structure and position are a result of the synergistic effects of various factors. 展开更多
关键词 Yangtze River estuary hypoxic zone STRATIFICATION flow field environment organic decomposition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部