期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-resolution Hyper-spectral Image Classification with Parts-based Feature and Morphology Profile in Urban Area 被引量:1
1
作者 HUANG Yuancheng ZHANG Liangpei LI Pingxiang ZHONG Yanfei 《Geo-Spatial Information Science》 2010年第2期111-122,共12页
High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in th... High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in the data, the data processing of HHR is a challenging work. In this paper, based on spectral mixture analysis theory, a new stack of parts description features were extracted, and then incorporated with a stack of morphology based spatial features. Partially supervised constrained energy minimization (CEM) and unsupervised nonnegative matrix factorization (NMF) were used to extract the part-features. The joint features were then integrated by SVM classifier. The advantages of this method are the representation of physical composition of the urban area by the parts-features and the show of multi-scale structure information by morphology profiles. Experiments with an airborne hyper-spectral data flightline over the Washington DC Mall were performed, and the performance of the proposed algorithm was evaluated in comparison with well-known nonparametric weighted feature extraction (NWFE) and feature selection method. The results shown that the proposed features-joint scheme consistently outperforms the traditional methods, and so can provide an effective option for processing HHR data in urban area. 展开更多
关键词 parts-features CEM NMF morphology profiles hyper-spectral image urban classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部