期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于神经网络深度学习模型的踝关节X线片标志点自动定位研究
1
作者 刘沁峰 胡师尧 +5 位作者 张宇琛 常健 刘辉 孙正明 凌鸣 王涛 《中国医疗设备》 2024年第10期45-51,57,共8页
目的探索基于神经网络深度学习模型的踝关节X线片标志点自动定位方法及其应用价值。方法选取陕西省人民医院2019年1月至2022年11月间行X线检查的360例成年人正常左踝关节正、侧位片影像资料为研究对象,将其随机分配至训练集(210例)、验... 目的探索基于神经网络深度学习模型的踝关节X线片标志点自动定位方法及其应用价值。方法选取陕西省人民医院2019年1月至2022年11月间行X线检查的360例成年人正常左踝关节正、侧位片影像资料为研究对象,将其随机分配至训练集(210例)、验证集(90例)和测试集(60例)。以人工标注作为参考,对图像预处理后分别建立基于神经网络Unet架构的踝关节X线片标志点预测模型,生成对应的热力图,并用测试集数据进行验证。结果在踝关节X线正位片6个标志点的预测中,2 mm阈值的平均正确估计比例(Percentage of Correct Keypoints,PCK)可达99.7%,总体平均径向误差(Mean Radial Errors,MRE)为0.411,总体标准差(Standard Deviation,SD)为0.290。距骨顶端内点的预测准确度最高,1 mm阈值时的PCK可达100%,同时其MRE及SD在正位片6个点中最小,分别为0.290和0.178。在踝关节X线侧位片9个标志点的预测中,2 mm阈值的平均PCK达到95.0%,总体MRE为0.669,总体SD为0.710。胫骨下段最前点的预测准确度最高,1 mm阈值时的PCK可达100%,同时其MRE及SD在侧位片9个点中最小,分别为0.334和0.173。正位片和侧位片所有标志点的预测位置坐标与对应参考标准标志点位置坐标差异均无统计学意义(P>0.05)。结论基于神经网络深度学习模型能够实现对踝关节X线片标志点的有效自动定位,对辅助踝关节X线片形态学自动测量和疾病诊疗具有应用价值。 展开更多
关键词 踝关节 标志点自动定位 X线成像 深度学习模型 神经网络 UNet架构 形态学自动测量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部