In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of ...In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172185 and 10972147)the Natural Science Foundation of Hebei Province,China (Grant No. A2010001052)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No. IRT0971)
文摘In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.