Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achie...Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.展开更多
This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow e...This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow equation and geometrical model of bulging of a sheet into a long trapezoid groove or truncated cone, by introducing the friction-factor P which describes the friction effect on the process. Also, the paper proposes the method of controlling thickness nonuniformity and develops the equipment which for uniform thickness of bulging, is automatically controlled with a computerl it also analyzes the important innuence of lubrication on thickness distribution of bulging materials. By the assumption, the relationship between bulging pressure and time is obtained in bulging of a sheet into the groove and cone, and p-t curve of multi-mould-cavity complicated bulging is discussed based on the analysis of single-mould-cavity bulging characteristics.展开更多
It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in ...It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.展开更多
By hydrolysing titanium isopropoxide in a long hydrocarbon chain surfactant-containing solution, TiO2 fine particles with a diversity of well-defined morphologies was synthesized in this study by a hydrothermal route....By hydrolysing titanium isopropoxide in a long hydrocarbon chain surfactant-containing solution, TiO2 fine particles with a diversity of well-defined morphologies was synthesized in this study by a hydrothermal route. The structural change during the formation process was monitored by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. TiO2 with various morphologies such as particle, sheet, rod, tube and flower-like shape was obtained by carefully controlling the preparation conditions. The experimental results show that the pH value is crucial for shape control of the produced TiO2 because it can change the charge state of the surfactant in the solution and the adsorption potential of the surfactant on the TiO2 surface. The shape evolvement of anatase TiO2 was elucidated by quenching the reaction at different stage and the formation mechanism of different shaped TiO2 was suggested.展开更多
The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields...The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields, formarion of road retained along the next goaf and seepage of water and methane through the gob. In this paper, the software RFPA'2000 is used to construct numerical models. Especially the Euler method of control volume is proposed to solve the simulation difficulty arising from plastically finite deformations. The results show that three characteristic regions occurred in the gob area: (1) a naturally accumulated region, 0-10 m away from unbroken surrounding rock walls, where the beating pressure is nearly zero; (2) an overcompacted region, 10-20 m away from unbroken walls, where the beating pressure results in the maximum value of the gob area; (3) a stable compaction region, more than 20 m away from unbroken walls and occupying absolutely most of the gob area, where the beating pressures show basically no differences. Such a characteristic can exolain the easy-seeoaged “O”-ring phenomena around mining fields very well.展开更多
The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger s...The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.展开更多
Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by r...Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by repeated unidirectional bending(RUB)process through control of(0002)basal texture.Compared with as-received sheet,the Erichsen value(IE)of the sheet underwent RUB process increases to 5.90 from 3.53 at room temperature.It is also confirmed that cell phone houses could be stamped successfully in crank press with AZ31B magnesium alloy sheets underwent RUB process.It provides an alternative to the electronics industry in the application of magnesium alloys.展开更多
Asparagus macowanfi Baker, is a climbing herbaceous foliage species in genus Asparagus of Liliaceae, This paper summarized its multiple uses, morphologi- cal characteristics, biological habit, reproduction methods, ma...Asparagus macowanfi Baker, is a climbing herbaceous foliage species in genus Asparagus of Liliaceae, This paper summarized its multiple uses, morphologi- cal characteristics, biological habit, reproduction methods, management after cultiva- tion, prevention and control of pests and disease, as well as harvest and grading, with the objective to provide references for the exploitation and utilization of As- paragus macowanii Baker.展开更多
The research work presented in this paper is based on the concrete background ofthe Cooperative Graphics Editor (CGE), allowing two or more persons to remotely edit a graphicdocument simultaneously. A new concurrency ...The research work presented in this paper is based on the concrete background ofthe Cooperative Graphics Editor (CGE), allowing two or more persons to remotely edit a graphicdocument simultaneously. A new concurrency control algorithm based on partial order set ispresented, which has fast response and less undo-redo operations as there are no lock mechanisms.It is used to solve inconsistency caused by operation on intersecting graphics concurrently. CGEalso possesses a mask strategy to solve inconsistency caused by operation on the same graphicconcurrently.展开更多
Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination usi...Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination using a wide variety of analytical tools and frameworks,to date very few studies have employed multifractal techniques to study the nature of interpersonal coordination across multiple spatiotemporal scales.In the present study we address this gap.Methods:We investigated the dynamics of a simple dyadic interpersonal coordination task where each participant manually controlled a virtual object in relation to that of his or her partner.We tested whether the resulting hand-movement time series exhibits multi-scale properties and whether those properties are associated with successful performance.Results:Using the formalism of multifractals,we show that the performance on the coordination task is strongly multi-scale,and that the multi-scale properties appear to arise from interaction-dominant dynamics.Further,we find that the measure of across-scale interactions,multifractal spectrum width,predicts successful performance at the level of the dyad.Conclusion:The results are discussed with respect to the implications of multifractals and interaction-dominance for understanding control in an interpersonal context.展开更多
To determine the toughness of materials, Charpy V notch test has been widely used over the world. Originally, the Charpy-V or U tests were used mainly as a quality control tests. In this paper, effects of temperature ...To determine the toughness of materials, Charpy V notch test has been widely used over the world. Originally, the Charpy-V or U tests were used mainly as a quality control tests. In this paper, effects of temperature and notch geometry on variation of toughness/yield stress ratio were investigated. The experimental work has been performed on austenitic stainless steel 316L using Charpy tests and carried out at temperature range from 20 ℃ to 250 ℃ on different dimension of V- and U-notch specimens. Energy of fracture was determined directly from machine tests. Furthermore, Barsoum correlation has been applied to determine toughness/yield stress ratio as function of temperature. In addition, several parameters were investigated namely specimen thickness and notch cut angles. U-notch specimen offers a high resistance comparatively to the V-notch and that toughness depends on temper situation and orientation of notch relative to the rolling direction.展开更多
Silver nanoparticles with different morphologies were prepared in AgNO3 aqueous solution using nanocarbon as template medium and polymer surfactant as protecting agent in an ultrasonic field.The polymer surfactant pol...Silver nanoparticles with different morphologies were prepared in AgNO3 aqueous solution using nanocarbon as template medium and polymer surfactant as protecting agent in an ultrasonic field.The polymer surfactant polyvinylpyrrolidone(PVP)was self-prepared and used directly in aqueous solution form.The molecular weight of PVP was measured by viscosimeter.The crystalline phase,component,size,and morphology of the as-synthesized silver naoparticles were characterized by XRD,TEM,FTIR,and Laser Granularity Instrument.The results indicated that ultrasonic was the key factor to deoxidize Ag+ to be Ago,nanocarbon and polymer surfactants accelerated the deoxidization reaction course and controlled the agglomeration of freshly formed silver nanoparticles,the category of polymer surfactant had decisive effect on the morphology of as-synthesized nanoparticle.Well-defined dendrites silver nanoparticle could be attained when choosing PVP as surfactant in AgNO3 aqueous solution,while regular sphere silver nanoparticle could be synthesized in the presence of polyvinyl alcohol(PVA)surfactant.Moreover,the concentration of AgNO3 and ultrasonic action time also had obvious effect on the morphology of silver nanoparticle,low concentration of AgNO3 and long time of ultrasonic were not in favor of forming dendrite silver.展开更多
The design and fabrication of solid nanomaterials are the key issues in heterogeneous catalysis to achieve desired performance. Traditionally, the main theme is to reduce the size of the catalyst particles as small as...The design and fabrication of solid nanomaterials are the key issues in heterogeneous catalysis to achieve desired performance. Traditionally, the main theme is to reduce the size of the catalyst particles as small as possible for maximizing the number of active sites. In recent years, the rapid advancement in materials science has enabled us to fabricate catalyst particles with tuna- ble morphology. Consequently, both size modulation and morphology control of the catalyst particles can be achieved inde- pendently or synergistically to optimize their catalytic properties. In particular, morphology control of solid catalyst particles at the nanometer level can selectively expose the reactive crystal facets, and thus drastically promote their catalytic performance. In this review, we summarize our recent work on the morphology impact of Co304, CeO2 and Fe203 nanomaterials in catalytic reactions, together with related literature on morphology-dependent nanocatalysis of metal oxides, to demonstrate the importance of tuning the shape of oxide-nanocatalysts for prompting their activity, selectivity and stability, which is a rapidly growing topic in heterogeneous catalysis. The fundamental understanding of the active sites in morphology-tunable oxides that are enclosed by reactive crystal facets is expected to direct the development of highly efficient nanocatalysts.展开更多
Synthesis of shape-controlled Pt nanocrystals is substantial and important for enhancing chemical and electrochemical reactions.However,the removal of capping agents,shape-controlling chemicals,on Pt surfaces is essen...Synthesis of shape-controlled Pt nanocrystals is substantial and important for enhancing chemical and electrochemical reactions.However,the removal of capping agents,shape-controlling chemicals,on Pt surfaces is essential prior to conducting the catalytic reactions.Here we report a facile one-pot synthesis of Pt nanocubes directly grown on carbon supports(Pt nanocubes/C) with modulating the kinetic reaction factors for shaping the nanocrystals,but without adding any capping agents for preserving the clean Pt surfaces.Well-dispersed Pt nanocubes/C shows enhanced activity and long-term stability toward methanol oxidation reaction compared to the commercial Pt/C catalyst.展开更多
基金Projects(51104043,51374067)supported by the National Natural Science Foundation of ChinaProject(2012CB619506)supported by the National Basic Research Program of ChinaProject(N120409002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Asymmetric rolling (ASR), as one of severe plastic deformation (SPD) methods to make ultra-fine materials with enhanced performance is mainly used to prepare foil and thin strip. The asymmetrical rolling was achieved by adjusting the diameters of the upper roll and the bottom roll and was used to prepare hot-rolled thick plate of 5182 aluminium alloy. The shear deformation and plate shape control were experimentally studied. The experimental results show that asymmetrical rolling has a significant effect on metal deformation stream and can somehow refine microstructure and improve the uniformity of microstructure and properties. The asymmetrical rolling process can also reduce the rolling force. However, bending of rolling plate often happens during asymmetrical rolling process. The factors affecting the bending were discussed.
文摘This paper proposes the assumption that the flow with viscous friction is the stretch of part of the sheet that lies along the walls of a die during the process of superplastic bulging according to superplastic flow equation and geometrical model of bulging of a sheet into a long trapezoid groove or truncated cone, by introducing the friction-factor P which describes the friction effect on the process. Also, the paper proposes the method of controlling thickness nonuniformity and develops the equipment which for uniform thickness of bulging, is automatically controlled with a computerl it also analyzes the important innuence of lubrication on thickness distribution of bulging materials. By the assumption, the relationship between bulging pressure and time is obtained in bulging of a sheet into the groove and cone, and p-t curve of multi-mould-cavity complicated bulging is discussed based on the analysis of single-mould-cavity bulging characteristics.
基金provided by the National Natural Science Foundation of China (No. 51174195)the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM08X04)+1 种基金the Science Foundation for Youth of China University of Mining &Technology (No. 2008A02)supported by China Scholarship Council for High-Level University Program (No.CSC[2010] 3006)
文摘It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.
基金the Natural Science Foundation of Tianjin(No.06YFJMJC05000).
文摘By hydrolysing titanium isopropoxide in a long hydrocarbon chain surfactant-containing solution, TiO2 fine particles with a diversity of well-defined morphologies was synthesized in this study by a hydrothermal route. The structural change during the formation process was monitored by scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. TiO2 with various morphologies such as particle, sheet, rod, tube and flower-like shape was obtained by carefully controlling the preparation conditions. The experimental results show that the pH value is crucial for shape control of the produced TiO2 because it can change the charge state of the surfactant in the solution and the adsorption potential of the surfactant on the TiO2 surface. The shape evolvement of anatase TiO2 was elucidated by quenching the reaction at different stage and the formation mechanism of different shaped TiO2 was suggested.
基金Projects 2005CB221502 supported by the Vital Foundational 973 Program of China, 50225414 by the National Outstanding Youth Foundation,20040350222 by China Postdoctoral Science FoundationBK 2004033 by Jiangsu Natural Science Foundation
文摘The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields, formarion of road retained along the next goaf and seepage of water and methane through the gob. In this paper, the software RFPA'2000 is used to construct numerical models. Especially the Euler method of control volume is proposed to solve the simulation difficulty arising from plastically finite deformations. The results show that three characteristic regions occurred in the gob area: (1) a naturally accumulated region, 0-10 m away from unbroken surrounding rock walls, where the beating pressure is nearly zero; (2) an overcompacted region, 10-20 m away from unbroken walls, where the beating pressure results in the maximum value of the gob area; (3) a stable compaction region, more than 20 m away from unbroken walls and occupying absolutely most of the gob area, where the beating pressures show basically no differences. Such a characteristic can exolain the easy-seeoaged “O”-ring phenomena around mining fields very well.
文摘The AZ31 magnesium alloy sheets obtained by multi-pass hot rolling were applied to cold rolling and the maximum single pass cold rolling reduction prior to failure of AZ31 magnesium alloy was enhanced to 41%. Larger single pass rolling reduction led to weaker texture during the multi-pass hot rolling procedure. The sheet obtained showed weak basal texture, while the value was only 1/3-1/2 that of general as-rolled AZ31 Mg alloy sheets. It was beneficial for the enhancement of further cold rolling formability despite of the coarser grain size. The deformation mechanism for the formation of texture in AZ31 magnesium alloy sheet was also analyzed in detail.
基金Project(50504019)supported by the National Natural Science Foundation of ChinaProject(2008BB4040)supported by the Science Foundation of Chongqing,ChinaProject(2008AA4028)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,China
文摘Electric product house of magnesium alloy sheet is usually obtained by warm stamping owing to its poor plasticity and formability at room temperature.The formability of AZ31B magnesium alloy sheet can be improved by repeated unidirectional bending(RUB)process through control of(0002)basal texture.Compared with as-received sheet,the Erichsen value(IE)of the sheet underwent RUB process increases to 5.90 from 3.53 at room temperature.It is also confirmed that cell phone houses could be stamped successfully in crank press with AZ31B magnesium alloy sheets underwent RUB process.It provides an alternative to the electronics industry in the application of magnesium alloys.
文摘Asparagus macowanfi Baker, is a climbing herbaceous foliage species in genus Asparagus of Liliaceae, This paper summarized its multiple uses, morphologi- cal characteristics, biological habit, reproduction methods, management after cultiva- tion, prevention and control of pests and disease, as well as harvest and grading, with the objective to provide references for the exploitation and utilization of As- paragus macowanii Baker.
文摘The research work presented in this paper is based on the concrete background ofthe Cooperative Graphics Editor (CGE), allowing two or more persons to remotely edit a graphicdocument simultaneously. A new concurrency control algorithm based on partial order set ispresented, which has fast response and less undo-redo operations as there are no lock mechanisms.It is used to solve inconsistency caused by operation on intersecting graphics concurrently. CGEalso possesses a mask strategy to solve inconsistency caused by operation on the same graphicconcurrently.
文摘Background:Interpersonal coordination is an essential aspect of daily life,and crucial to performance in cooperative and competitive team sports.While empirical research has investigated interpersonal coordination using a wide variety of analytical tools and frameworks,to date very few studies have employed multifractal techniques to study the nature of interpersonal coordination across multiple spatiotemporal scales.In the present study we address this gap.Methods:We investigated the dynamics of a simple dyadic interpersonal coordination task where each participant manually controlled a virtual object in relation to that of his or her partner.We tested whether the resulting hand-movement time series exhibits multi-scale properties and whether those properties are associated with successful performance.Results:Using the formalism of multifractals,we show that the performance on the coordination task is strongly multi-scale,and that the multi-scale properties appear to arise from interaction-dominant dynamics.Further,we find that the measure of across-scale interactions,multifractal spectrum width,predicts successful performance at the level of the dyad.Conclusion:The results are discussed with respect to the implications of multifractals and interaction-dominance for understanding control in an interpersonal context.
文摘To determine the toughness of materials, Charpy V notch test has been widely used over the world. Originally, the Charpy-V or U tests were used mainly as a quality control tests. In this paper, effects of temperature and notch geometry on variation of toughness/yield stress ratio were investigated. The experimental work has been performed on austenitic stainless steel 316L using Charpy tests and carried out at temperature range from 20 ℃ to 250 ℃ on different dimension of V- and U-notch specimens. Energy of fracture was determined directly from machine tests. Furthermore, Barsoum correlation has been applied to determine toughness/yield stress ratio as function of temperature. In addition, several parameters were investigated namely specimen thickness and notch cut angles. U-notch specimen offers a high resistance comparatively to the V-notch and that toughness depends on temper situation and orientation of notch relative to the rolling direction.
文摘Silver nanoparticles with different morphologies were prepared in AgNO3 aqueous solution using nanocarbon as template medium and polymer surfactant as protecting agent in an ultrasonic field.The polymer surfactant polyvinylpyrrolidone(PVP)was self-prepared and used directly in aqueous solution form.The molecular weight of PVP was measured by viscosimeter.The crystalline phase,component,size,and morphology of the as-synthesized silver naoparticles were characterized by XRD,TEM,FTIR,and Laser Granularity Instrument.The results indicated that ultrasonic was the key factor to deoxidize Ag+ to be Ago,nanocarbon and polymer surfactants accelerated the deoxidization reaction course and controlled the agglomeration of freshly formed silver nanoparticles,the category of polymer surfactant had decisive effect on the morphology of as-synthesized nanoparticle.Well-defined dendrites silver nanoparticle could be attained when choosing PVP as surfactant in AgNO3 aqueous solution,while regular sphere silver nanoparticle could be synthesized in the presence of polyvinyl alcohol(PVA)surfactant.Moreover,the concentration of AgNO3 and ultrasonic action time also had obvious effect on the morphology of silver nanoparticle,low concentration of AgNO3 and long time of ultrasonic were not in favor of forming dendrite silver.
基金supported by the National Natural Science Foundation of China(20923001,21025312)
文摘The design and fabrication of solid nanomaterials are the key issues in heterogeneous catalysis to achieve desired performance. Traditionally, the main theme is to reduce the size of the catalyst particles as small as possible for maximizing the number of active sites. In recent years, the rapid advancement in materials science has enabled us to fabricate catalyst particles with tuna- ble morphology. Consequently, both size modulation and morphology control of the catalyst particles can be achieved inde- pendently or synergistically to optimize their catalytic properties. In particular, morphology control of solid catalyst particles at the nanometer level can selectively expose the reactive crystal facets, and thus drastically promote their catalytic performance. In this review, we summarize our recent work on the morphology impact of Co304, CeO2 and Fe203 nanomaterials in catalytic reactions, together with related literature on morphology-dependent nanocatalysis of metal oxides, to demonstrate the importance of tuning the shape of oxide-nanocatalysts for prompting their activity, selectivity and stability, which is a rapidly growing topic in heterogeneous catalysis. The fundamental understanding of the active sites in morphology-tunable oxides that are enclosed by reactive crystal facets is expected to direct the development of highly efficient nanocatalysts.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2015R1D1A3A01019467,NRF2017R1D1A1B03031892) and KBSI(D37614)
文摘Synthesis of shape-controlled Pt nanocrystals is substantial and important for enhancing chemical and electrochemical reactions.However,the removal of capping agents,shape-controlling chemicals,on Pt surfaces is essential prior to conducting the catalytic reactions.Here we report a facile one-pot synthesis of Pt nanocubes directly grown on carbon supports(Pt nanocubes/C) with modulating the kinetic reaction factors for shaping the nanocrystals,but without adding any capping agents for preserving the clean Pt surfaces.Well-dispersed Pt nanocubes/C shows enhanced activity and long-term stability toward methanol oxidation reaction compared to the commercial Pt/C catalyst.