The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studi...The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.展开更多
A field experiment was conducted in Jungar Banner,Inner Mongolia,China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years,and to anal...A field experiment was conducted in Jungar Banner,Inner Mongolia,China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years,and to analyze the triggering factors of the soil formation.Results indicate that plant types affect soil-forming process especially in the upper layer (0-20 cm),and the spatial structure of reclaimed plant is the main reason for variability of the soil-forming process.In the upper soil layer at the site reclaimed with mixed plants,the concentrations of soil organic matter (SOM) and soil organic carbon (SOC) are the highest,and they were significantly higher at the sites reclaimed with Leymus chinensis,Caragana sinica,which is mainly due to a large amount of litter fall and root exudation in herbages and shrubs.However,the concentrations of SOM and SOC in the soils at the reclaimed sites are quite low comparing with those in local primary soil,which indicates the importance of using organic amendments during the ecological restoration in the study area.展开更多
By using Total Routhian Surface (TRS) method the deformation of the nucleus ^160Yb is studied. The result shows that the triaxial superdeformed state exists with deformation parameters ε2 = 0.38 and γ = 21°, ...By using Total Routhian Surface (TRS) method the deformation of the nucleus ^160Yb is studied. The result shows that the triaxial superdeformed state exists with deformation parameters ε2 = 0.38 and γ = 21°, where proton shell correction energy plays a key role, and the sum of two quasi-proton particle energies gives an additional driving effect. The rotational energy also has an additional role in the formation of triaxial superdeformed.展开更多
We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were form...We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.展开更多
文摘The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2007CB106801)the Seventh Framework Program of European Union (No. 226818)Testing Foundation of Northeast Normal University
文摘A field experiment was conducted in Jungar Banner,Inner Mongolia,China to study the effects of plant types on the physical structure and chemical properties of open-cast mining soils reclaimed for 15 years,and to analyze the triggering factors of the soil formation.Results indicate that plant types affect soil-forming process especially in the upper layer (0-20 cm),and the spatial structure of reclaimed plant is the main reason for variability of the soil-forming process.In the upper soil layer at the site reclaimed with mixed plants,the concentrations of soil organic matter (SOM) and soil organic carbon (SOC) are the highest,and they were significantly higher at the sites reclaimed with Leymus chinensis,Caragana sinica,which is mainly due to a large amount of litter fall and root exudation in herbages and shrubs.However,the concentrations of SOM and SOC in the soils at the reclaimed sites are quite low comparing with those in local primary soil,which indicates the importance of using organic amendments during the ecological restoration in the study area.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10575036 and 10675046Natural Science Foundation of Zhejiang Province under Grant Nos.Y605476 and Y604027
文摘By using Total Routhian Surface (TRS) method the deformation of the nucleus ^160Yb is studied. The result shows that the triaxial superdeformed state exists with deformation parameters ε2 = 0.38 and γ = 21°, where proton shell correction energy plays a key role, and the sum of two quasi-proton particle energies gives an additional driving effect. The rotational energy also has an additional role in the formation of triaxial superdeformed.
基金Project supported by the Research Foundation of University of Catania, Italy (No. ORCT067410/2006)
文摘We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.