Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. Th...Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.展开更多
A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain pat...A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.展开更多
The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum...The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model.展开更多
The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clari...The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.展开更多
Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the m...Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.展开更多
In the application of regression analysis method to model dam deformation, the ill-condition problem occurred in coefficient matrix always prevents an accurate modeling mainly due to the multicollinearity of the varia...In the application of regression analysis method to model dam deformation, the ill-condition problem occurred in coefficient matrix always prevents an accurate modeling mainly due to the multicollinearity of the variables. Independent component regression (ICR) was proposed to model the dam deformation and identify the physical origins of the deformation. Simulation experiment shows that ICR can successfully resolve the problem of ill-condition and produce a reliable deformation model. After that, the method is applied to model the deformation of the Wuqiangxi Dam in Hunan province, China. The result shows that ICR can not only accurately model the deformation of the dam, but also help to identify the physical factors that affect the deformation through the extracted independent components.展开更多
To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adv...To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adventitious root length, adventitious root number, total root dry weight and ratio of root to shoot were detected using molecular map including 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on a recombinant inbred line (RIL) population with 150 lines derived from a cross between an lowland rice IR1552 and an upland rice Azucena in both solution culture (lowland condition) and paper culture (upland condition). Six QTLs and twenty-two pairs of epistatic loci for the four parameters were detected. Three QTLs detected for maximum adventitious root length in solution culture (MARLS), total root dry weight in both solution culture and paper culture (TRDWS and TRDWP) accounted for about 20%, 23% and 13% of the total variations, respectively. Only epistatic loci were found for maximum adventitious root length and adventitious root number in paper culture (MARLP and ARNP), and for ratio of root to shoot in both paper and solution culture (R/SP and R/SS), which accounted for about 12%-61% of the total variations in the parameters, respectively. No identical QTL or epistatic loci were found for the parameters in both solution and paper culture. The results indicate that there is a different genetic system responsible to root growth of rice seedlings under lowland and upland conditions and epistasis might be the major genetic basis for MARLP, ARNP, R/SP and R/SS.展开更多
文摘Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.
基金Project(2010CB731703) supported by the National Basic Research Program of China Project(0804) supported by the Shanghai Automotive Industry Corporation Foundation,ChinaProject(MSV-2010-03) supported by State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,China
文摘A numerical analysis of mechanical behavior of aluminum alloy sheet under cyclic plastic deformation was investigated.Forming limit at fracture was derived from Cockcroft-Latham ductile damage criterion.The strain path of bending center of incremental roller hemming could be accepted as a kind of plane strain bending deformation process.Incremental rope roller hemming could be used to alleviate ductile fracture behavior by changing the stress state of the hemming-effected area.SEM observation on the fracture surface indicates that cyclic plastic deformation affects ductile fracture mechanism.
文摘The analysis of variance(ANOVA), multiple quadratic regression and radial basis function artificial neural network(RBFANN) methods were used to study the springback and tensile strength in age forming of 2A97 aluminum alloy based on orthogonal array. The ANOVA analysis indicates that the springback reaches the minimum value when age forming is performed at 210 °C for 20 h using a single-curvature die with a radius of 400 mm, and the tensile strength reaches the maximum value when age forming is performed at 180 °C for 15 h using a single-curvature die with a radius of 1000 mm. The orders of the importance for the three factors of pre-deformation radius, aging temperature and aging time on the springback and tensile strength were determined. By analyzing the predicted results of the multiple quadratic regression and RBFANN methods, the prediction accuracy of the RBFANN model is higher than that of the regression model.
基金Project(GJJ150810)supported by the Research Project of Science and Technology for Jiangxi Province Department of Education,ChinaProject(gf201501001)supported by National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,ChinaProject(BSJJ2015015)supported by Doctor Start-up Fund of Jiangxi Science&Technology Normal University,China
文摘The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.
基金Project (51205102) supported by the National Natural Science Foundation of ChinaProject (2012M511401) supported by the China Postdoctoral Science FoundationProject (gf201101001) supported by the National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, China
文摘Electromagnetic forming tests were done at room temperature to reveal the influence of hydrogen content on the compressive properties of Ti-6Al-4V alloy at high strain rate. Microstructure was observed to reveal the mechanism of hydrogen-enhanced compressive properties. The experimental results indicate that hydrogen has favorable effects on the compressive properties of Ti-6Al-4V alloy at high strain rate. Compression of Ti-6Al-4V alloy first increases up to a maximum and then decreases with the increase of hydrogen content at the same discharge energy under EMF tests. The compression increases by 47.0% when 0.2% (mass fraction) hydrogen is introduced into Ti-6Al-4V alloy. The optimal hydrogen content for cold formation of Ti–6Al–4V alloy under EMF was determined. The reasons for the hydrogen-induced compressive properties were discussed.
基金Project(41074004)supported by the National Natural Science Foundation of ChinaProject(2013CB733303)supported by the National Basic Research Program of China
文摘In the application of regression analysis method to model dam deformation, the ill-condition problem occurred in coefficient matrix always prevents an accurate modeling mainly due to the multicollinearity of the variables. Independent component regression (ICR) was proposed to model the dam deformation and identify the physical origins of the deformation. Simulation experiment shows that ICR can successfully resolve the problem of ill-condition and produce a reliable deformation model. After that, the method is applied to model the deformation of the Wuqiangxi Dam in Hunan province, China. The result shows that ICR can not only accurately model the deformation of the dam, but also help to identify the physical factors that affect the deformation through the extracted independent components.
文摘To understand the genetic background of root growth of rice ( Oryza sativa L.) seedlings under different water supply conditions, quantitative trait loci (QTLs) and epistatic effect on seminal root length, maximum adventitious root length, adventitious root number, total root dry weight and ratio of root to shoot were detected using molecular map including 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on a recombinant inbred line (RIL) population with 150 lines derived from a cross between an lowland rice IR1552 and an upland rice Azucena in both solution culture (lowland condition) and paper culture (upland condition). Six QTLs and twenty-two pairs of epistatic loci for the four parameters were detected. Three QTLs detected for maximum adventitious root length in solution culture (MARLS), total root dry weight in both solution culture and paper culture (TRDWS and TRDWP) accounted for about 20%, 23% and 13% of the total variations, respectively. Only epistatic loci were found for maximum adventitious root length and adventitious root number in paper culture (MARLP and ARNP), and for ratio of root to shoot in both paper and solution culture (R/SP and R/SS), which accounted for about 12%-61% of the total variations in the parameters, respectively. No identical QTL or epistatic loci were found for the parameters in both solution and paper culture. The results indicate that there is a different genetic system responsible to root growth of rice seedlings under lowland and upland conditions and epistasis might be the major genetic basis for MARLP, ARNP, R/SP and R/SS.