In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures ...In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.展开更多
Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium...Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.展开更多
A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibri...A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.展开更多
The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t...The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.展开更多
Lattice structure information of heterogeneous nucleation at nucleation interface was present.The crystal orientation,and interfacial structure characteristic of liquid Al alloys nucleated on the basal surface(0001)Al...Lattice structure information of heterogeneous nucleation at nucleation interface was present.The crystal orientation,and interfacial structure characteristic of liquid Al alloys nucleated on the basal surface(0001)Al2O3single crystal substrate were identified by X-ray diffraction(XRD),scanning electron microscopy(SEM)and high resolution transmission electron microscopy(HRTEM)analysis.The preferred crystal orientations of pure Al and Al-1%Sb(mass fraction)alloy adjacent to the nucleation interface were examined as(200)and(220)planes of Al,respectively,and two corresponding orientation relationships were obtained.An improved nucleation efficiency and refined grains were attributed to both the reduced interplanar spacing of preferred orientation and the decrease of lattice misfit from16.4%to7.0%in Al-1%Sb/Al2O3nucleation group.展开更多
The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multip...The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multipole expansion in these calculations, the DF six-dimensional integral reduce to the sum of the products of three single-dimensional integrals. In this paper we have presented a procedure for the calculation of the radius dependent functions in the multipole expansion of the nuclear density and their Fourier transforms. We have also reduced the DF model integrals to the sum of the single dimensional integrals using the obtained relations for the radius dependent functions in the multipole expansion and their Fourier transforms.展开更多
Two varieties of fiddleneck (Phacelia tanacetifolia Benth.) plant were determined for visualizing somatic chromosomes. The 4-5 days old root tips were pre-treated in 6% a-monobromonaphtalane in +4 ℃ for 7.5 h, the...Two varieties of fiddleneck (Phacelia tanacetifolia Benth.) plant were determined for visualizing somatic chromosomes. The 4-5 days old root tips were pre-treated in 6% a-monobromonaphtalane in +4 ℃ for 7.5 h, then fixed in glacial acetic acid for 30 min and transferred to 70% ethanol for long storage. When the root tips were analyzed, they were hydrolyzed with 1 N HCI for 13 min at room temperature (25 ℃). After hydrolyzing, root tips were stained with 2% aceto orcein in darkness for 2.5 h. The squash method for preparation was used for chromosomal investigations. The chromosome length (C), relative length (RL), the long arm (L) and short arm (S) lengths, arm ratio (AR; L/S) and centromefic index (S/C) were calculated for caryologic parameters. The ideograms and detailed chromosome morphology measurements of the species were performed by the use of MicroMeasure 3.3. According to results, fiddleneck (Phacelia tanacetifolia Benth.) has 2n = 22 chromosomes and the karyotype formulas of two varieties of fiddleneck were 16 median and 6 submedian (16 m + 6 sm).展开更多
Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser ...Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.展开更多
In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucl...In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucleation theory and phase field models.Firstly,supergravity is considered in the nucleation theory by using pressure-dependent Gibbs free energy.It is found that the critical radius decreases and the nucleation rate increases when supergravity rises.Secondly,anisotropic heat transport is proposed in the phase field model to investigate the influence of supergravity on dendritic growth.Phase field simulations show that supergravity promotes the secondary dendritic growth in the direction parallel to supergravity.Finally,a multiply phase field model with pressure-dependent interfacial energy is employed to simulate the polycrystalline solidification under supergravity.Due to the depth-dependent pressure by supergravity,crystal grains are significantly refined by high pressure.In addition,gradient distribution of grain size is obtained in the solidification morphology of polycrystalline,which is consistent with previous experimental observations.Results of this work suggest that supergravity can be used to tune the microstructures and properties of materials.展开更多
基金Project(50875061) supported by the National Natural Science Foundation of ChinaProject(20092302110016) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to optimize the ductility of orthorhombic Ti2AlNb-based alloys sheet,Ti22Al27Nb sheet was treated by high density electropulsing(J max =6.80 7.09 kA/mm2,tp =110 μs) under ambient condition.Microstructures were observed by SEM,and the tensile properties were also studied using uniaxial tension tests.The experimental results show that electropulsing can refine the microstructures of Ti22Al27Nb sheets.The specimen with the fine and homogeneous microstructures has good plasticity,and its elongation reaches 19.4%.The mechanism about the effect of electropulsing treatment on the microstructure of Ti22Al27Nb sheets was discussed.It was thought that the increase in nucleation rate during phase transformation and a very short treating time were regarded as the main reasons of producing smaller grains and increase in the plasticity by electropulsing.
基金Project(51304095)supported by the National Natural Science Foundation of ChinaProject(S2013FZ029)supported by Science and Technology Planning Project of Yunnan Province
文摘Recent findings related to coagulable magnesium vapor nucleation and growth in vacuum were assessed critically, with emphasis on understanding these processes at a fundamental molecular level. The effects of magnesium vapor pressure, condensation temperature, and condensation zone temperature gradient on magnesium vapor nucleation in phase transitions and condensation from atomic collision and coacervation with collision under vacuum conditions were discussed. Magnesium powder and magnesium lump condensates were produced under different conditions and characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The right condensation zone temperature approach to the liquid transition primarily improved the magnesium vapor concentration rate. The gas-solid phase transition was primarily inhibited by setting a small condenser temperature gradient. Under the right condensation temperature and temperature gradients, increasing magnesium vapor partial pressure improved crystallization and reduced the oxidation rate.
基金Project(20110933K) supported by the State Key Laboratory of Powder Metallurgy,ChinaProject(2012QNZT002) supported by the Freedom Explore Program of Central South University,ChinaProject(CSUZC2012024) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘A Ni layer with a thickness of about 100 nm was sputtered on Cu substrates,followed by an ultrasonic seeding with nanodiamond suspension.High-quality diamond film with its crystalline grains close to thermal equilibrium shape was deposited on Cu substrates by hot-filament chemical vapor deposition(HF-CVD),and the sp2 carbon content was less than 5.56%.The nucleation and growth of diamond film were investigated by micro-Raman spectroscopy,scanning electron microscopy,and X-ray diffraction.The results show that the nucleation density of diamond on the Ni-modified Cu substrates is 10 times higher than that on blank Cu substrates.The enhancement mechanism of the nucleation kinetics by Ni modification layer results from two effects:namely,the nanometer rough Ni-modified surface shows an improved absorption of nanodiamond particles that act as starting points for the diamond nucleation during HF-CVD process;the strong catalytic effect of the Ni-modified surface causes the formation of graphite layer that acts as an intermediate to facilitate diamond nucleation quickly.
文摘The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.
基金Project (51474148) supported by the National Natural Science Foundation of ChinaProject (14140711000) supported by Shanghai International Cooperation Program,ChinaProject (U1660203) supported by Joint Funds of the National Natural Science Foundation of China
文摘Lattice structure information of heterogeneous nucleation at nucleation interface was present.The crystal orientation,and interfacial structure characteristic of liquid Al alloys nucleated on the basal surface(0001)Al2O3single crystal substrate were identified by X-ray diffraction(XRD),scanning electron microscopy(SEM)and high resolution transmission electron microscopy(HRTEM)analysis.The preferred crystal orientations of pure Al and Al-1%Sb(mass fraction)alloy adjacent to the nucleation interface were examined as(200)and(220)planes of Al,respectively,and two corresponding orientation relationships were obtained.An improved nucleation efficiency and refined grains were attributed to both the reduced interplanar spacing of preferred orientation and the decrease of lattice misfit from16.4%to7.0%in Al-1%Sb/Al2O3nucleation group.
文摘The Double Folding (DF) model calculation of the internuclear potential in heavy-ion interactions when the participant nuclei are deformed in their ground states involves a six-dimensional integral. Using the multipole expansion in these calculations, the DF six-dimensional integral reduce to the sum of the products of three single-dimensional integrals. In this paper we have presented a procedure for the calculation of the radius dependent functions in the multipole expansion of the nuclear density and their Fourier transforms. We have also reduced the DF model integrals to the sum of the single dimensional integrals using the obtained relations for the radius dependent functions in the multipole expansion and their Fourier transforms.
文摘Two varieties of fiddleneck (Phacelia tanacetifolia Benth.) plant were determined for visualizing somatic chromosomes. The 4-5 days old root tips were pre-treated in 6% a-monobromonaphtalane in +4 ℃ for 7.5 h, then fixed in glacial acetic acid for 30 min and transferred to 70% ethanol for long storage. When the root tips were analyzed, they were hydrolyzed with 1 N HCI for 13 min at room temperature (25 ℃). After hydrolyzing, root tips were stained with 2% aceto orcein in darkness for 2.5 h. The squash method for preparation was used for chromosomal investigations. The chromosome length (C), relative length (RL), the long arm (L) and short arm (S) lengths, arm ratio (AR; L/S) and centromefic index (S/C) were calculated for caryologic parameters. The ideograms and detailed chromosome morphology measurements of the species were performed by the use of MicroMeasure 3.3. According to results, fiddleneck (Phacelia tanacetifolia Benth.) has 2n = 22 chromosomes and the karyotype formulas of two varieties of fiddleneck were 16 median and 6 submedian (16 m + 6 sm).
基金supported by the Pre-research Fund Project of Ministry of Equipment and Development of China(61409230301)the Fundamental Research Funds for the Central Universities(2019kfyXMPY005 and 2019kfyXKJC042)。
文摘Dual-phase high-entropy alloys(DP-HEAs)with excellent strength-ductility combinations have attracted scientific interests.In the present study,the microstructures of AlCrCuFeNi3.0DP-HEA fabricated via selective laser melting(SLM)are rationally adjusted and controlled.The mechanisms engendering the hierarchical microstructures are revealed.It is found that the AlCrCuFeNi3.0fabricated by SLM at the scanning speed of 400 mm s-1falls into the eutectic coupled zone,and increasing the scanning speed will make this composition deviate away from the eutectic coupled zone due to the increased cooling rate.The enrichment of Cr and Fe solutes with large growth restriction values ahead of the solid/liquid interface can develop a constitutional supercooling zone,thus facilitating the heterogeneous nucleation and nearequiaxed grain formation.The synergy of the near-eutectic DP nano-structures and near-equiaxed grains instead of columnar ones effectively suppresses cracking for the as-built DP-HEA.During the tensile deformation,the intergranular back stress hardening similar to the grain-boundary strengthening is discovered.Meanwhile,the near-eutectic microstructures comprised of soft face-centered cubic and hard ordered bodycentered cubic(B2)DP nano-structures lead to plastic strain incompatibility within grains,thus producing the intragranular back stress.The Cr-rich nano-precipitates inside the B2 phase are found to be sheared by dislocation gliding and can complement the back stress.Additionally,multiple strengthening mechanisms are physically evaluated,and the back stress strengthening contributes obviously to the high performances of the as-built DP-HEA.
基金This work was supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(Grant No.51988101)the National Natural Science Foundation of China(Grant Nos.12192214 and 11972320)the Key Research Project of Zhejiang Laboratory(Grant No.2021PE0AC02).
文摘In order to understand the influence of supergravity on the microstructure of materials,crystal nucleation,dendritic growth,and polycrystal solidification under supergravity are investigated by using the modified nucleation theory and phase field models.Firstly,supergravity is considered in the nucleation theory by using pressure-dependent Gibbs free energy.It is found that the critical radius decreases and the nucleation rate increases when supergravity rises.Secondly,anisotropic heat transport is proposed in the phase field model to investigate the influence of supergravity on dendritic growth.Phase field simulations show that supergravity promotes the secondary dendritic growth in the direction parallel to supergravity.Finally,a multiply phase field model with pressure-dependent interfacial energy is employed to simulate the polycrystalline solidification under supergravity.Due to the depth-dependent pressure by supergravity,crystal grains are significantly refined by high pressure.In addition,gradient distribution of grain size is obtained in the solidification morphology of polycrystalline,which is consistent with previous experimental observations.Results of this work suggest that supergravity can be used to tune the microstructures and properties of materials.