The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the de...The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.展开更多
An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the desig...An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.展开更多
文摘The shape optimization is studied by adopting the domain integrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.
文摘An integrated system FSOP2D,including modules for the shape optimal modeling,structural analysis,sensitivity analysis,optimal method library and post- processing,is developed.By selecting fictitious loads as the design variables that has a linear relationship with the grid point locations and using design sensitivity analysis of the domain method,it is easier to solve the velocity field.In the course of optimal iterations,mesh distortion is kept to a minimum,sensitivity derivatives of object function,stress constraints and displacement constraints are derived.Computation of sensitivity analysis is achieved in the system.Two engineering examples are used to prove the system's effectiveness,the optimal results can successfully be obtained by lesser number of iterations.