We have investigated the structure evolution of the ^124-134Xe isotopic chain in the framework of the proton-neutron interacting model IBM2. The positive parity spectra of the ground state, quasi-β and quasi-γ bands...We have investigated the structure evolution of the ^124-134Xe isotopic chain in the framework of the proton-neutron interacting model IBM2. The positive parity spectra of the ground state, quasi-β and quasi-γ bands are reproduced well. The staggering in ^124-130Xe are almost completely removed and the ? band agree well with the experiment data, even for the high-spin quasi-3 states. The key quantities of the collective structure evolution, including level energies, the B(E2) transition branching ratios, and the M1 excitations to 11^+ mixer-symmetry states are analyzed by comparing with the experimental data. The parameters for representation of the Oπν(6) and SUπν^*(3) features in isotopes are examined. Both experimental data and theoretical results show that the shape phase transition of ^124-134Xe isotopic chain is from the SUπν^* (3) (triaxial rotation) to the Uπν(5) (vibration motion) with a considerable constituent of the Oπν(6) symmetry (γ-unstable rotation), where the shape phase transition rapidly takes place between the neutron number N = 76 and N = 78.展开更多
The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Ham...The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.展开更多
From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. I...From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. In order to apply these similarity laws for the prediction of the characteristics of the collection efficiency, ηc, geometrically similar types of uni-flow cyclones were used. The body diameters of the cyclones were D_1=30, 50, 69 and 99 mm, respectively. The feed particle concentration of the fly-ash particles was up to C_o = 60g/m^3. From the experimental results: (1) the pressure drop, △pc, in the cyclones was a function of not only the Reynods number, Re_c, but also the body diameter, D_1; (2) the collection efficiency, η_c, did not always increase with decreasing body diameter but there existed an optimal body size; (3) application of the mechanical similarity laws to the collection efficiency was not always sufficient for estimating the collection efficiency, since the feed particle concentration was an additional important factor; (4) a new parameter which was the ratio, E_(pf), of the apparent separation energy, W_p, of the solid particles to the energy loss, E_c, of the gas flow in the cyclone was introduced for discussing the collection efficiency; (5) Fuchs theory, used to estimate the collection efficiency, was examined. Fuchs theory may be applied for high feed particle concentration.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.11075052the Natural Science Foundation of Zhejiang Province under Grant No.KY6100135
文摘We have investigated the structure evolution of the ^124-134Xe isotopic chain in the framework of the proton-neutron interacting model IBM2. The positive parity spectra of the ground state, quasi-β and quasi-γ bands are reproduced well. The staggering in ^124-130Xe are almost completely removed and the ? band agree well with the experiment data, even for the high-spin quasi-3 states. The key quantities of the collective structure evolution, including level energies, the B(E2) transition branching ratios, and the M1 excitations to 11^+ mixer-symmetry states are analyzed by comparing with the experimental data. The parameters for representation of the Oπν(6) and SUπν^*(3) features in isotopes are examined. Both experimental data and theoretical results show that the shape phase transition of ^124-134Xe isotopic chain is from the SUπν^* (3) (triaxial rotation) to the Uπν(5) (vibration motion) with a considerable constituent of the Oπν(6) symmetry (γ-unstable rotation), where the shape phase transition rapidly takes place between the neutron number N = 76 and N = 78.
基金supported in part by the Major State Basic Research Developing Program (Grant No 2007CB815000)the National Natural Science Foundation of China (Grant Nos 11005004, 10775004 and 10975008)+1 种基金the Southwest University Initial Research Foundation Grant to Doctor (Grant No.SWU110039)MZOS (Grant No 1191005-1010)
文摘The rapid transition between spherical and γ-soft shapes in Zn isotopes in the mass A 70 region,is analyzed using excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian for quadrupole vibrational and rotational degrees of freedom,with parameters determined by constrained self-consistent relativistic mean-field calculations for triaxial shapes.The microscopic potential energy surfaces,together with the characteristic collective observables,illustrate a rapid transition from near spherical shape at the N = 40 subshell,to γ-soft deformed shapes for lighter isotopes.The calculated spectra display fingerprints of a second-order shape phase transition that can be approximately described by the E(5) analytic solution.
文摘From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. In order to apply these similarity laws for the prediction of the characteristics of the collection efficiency, ηc, geometrically similar types of uni-flow cyclones were used. The body diameters of the cyclones were D_1=30, 50, 69 and 99 mm, respectively. The feed particle concentration of the fly-ash particles was up to C_o = 60g/m^3. From the experimental results: (1) the pressure drop, △pc, in the cyclones was a function of not only the Reynods number, Re_c, but also the body diameter, D_1; (2) the collection efficiency, η_c, did not always increase with decreasing body diameter but there existed an optimal body size; (3) application of the mechanical similarity laws to the collection efficiency was not always sufficient for estimating the collection efficiency, since the feed particle concentration was an additional important factor; (4) a new parameter which was the ratio, E_(pf), of the apparent separation energy, W_p, of the solid particles to the energy loss, E_c, of the gas flow in the cyclone was introduced for discussing the collection efficiency; (5) Fuchs theory, used to estimate the collection efficiency, was examined. Fuchs theory may be applied for high feed particle concentration.