Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,i...Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,its shape may be changed and part of the information may be lost.Therefore,we propose a method for constructing salience adaptive morphological structuring elements based on minimum spanning tree(MST).First,the gradient image of the input image is calculated,the edge image is obtained by non-maximum suppression(NMS)of the gradient image,and then chamfer distance transformation is performed on the edge image to obtain a salience map(SM).Second,the radius of structuring element is determined by calculating the maximum and minimum values of SM and then the minimum spanning tree is calculated on the SM.Finally,the radius is used to construct a structuring element whose shape and size adaptively change with the local features of the input image.In addition,the basic morphological operators such as erosion,dilation,opening and closing are redefined using the adaptive structuring elements and then compared with the classical morphological operators.The simulation results show that the proposed method can make full use of the local features of the image and has better processing results in image structure preservation and image filtering.展开更多
In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independen...In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.展开更多
基金National Natural Science Foundation of China(No.61761027)。
文摘Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,its shape may be changed and part of the information may be lost.Therefore,we propose a method for constructing salience adaptive morphological structuring elements based on minimum spanning tree(MST).First,the gradient image of the input image is calculated,the edge image is obtained by non-maximum suppression(NMS)of the gradient image,and then chamfer distance transformation is performed on the edge image to obtain a salience map(SM).Second,the radius of structuring element is determined by calculating the maximum and minimum values of SM and then the minimum spanning tree is calculated on the SM.Finally,the radius is used to construct a structuring element whose shape and size adaptively change with the local features of the input image.In addition,the basic morphological operators such as erosion,dilation,opening and closing are redefined using the adaptive structuring elements and then compared with the classical morphological operators.The simulation results show that the proposed method can make full use of the local features of the image and has better processing results in image structure preservation and image filtering.
基金supported by the National Natural Science Foundation of China(No.61401425)
文摘In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.