期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
IC真实缺陷的边界提取和缺陷尺寸与形状的表征 被引量:7
1
作者 王俊平 郝跃 《计算机学报》 EI CSCD 北大核心 2000年第7期673-678,共6页
为了对 IC制造中真实多余物缺陷进行分类与识别 ,IC多余物缺陷的特征提取是非常重要的一步 .文中首先提出一种基于数学形态学的 IC真实多余物缺陷边界的检测方法 .其次对边界进行了链码描述 .最后对边界所表示的多余物缺陷进行了尺寸测... 为了对 IC制造中真实多余物缺陷进行分类与识别 ,IC多余物缺陷的特征提取是非常重要的一步 .文中首先提出一种基于数学形态学的 IC真实多余物缺陷边界的检测方法 .其次对边界进行了链码描述 .最后对边界所表示的多余物缺陷进行了尺寸测量与形状分析 .在预处理阶段 ,利用彩色 HSV模型分割原 IC图像 ,然后用形态学开运算消除背景噪音 .对开后的结果图像进行形态膨胀及形态腐蚀运算 ,消除多余物缺陷中的小洞噪音以获得从复杂背景中分离和抽取多余物缺陷 .对分离后的缺陷用形态学算子提取边界 .由缺陷边界检测出一组缺陷的尺寸特征 (面积、周长、形心、宽度、高度 )及缺陷的形状特征 (矩形度、圆形度特征 ) .实验结果表明该文方法使多余物缺陷形状分析简单且易于测量 . 展开更多
关键词 IC 彩色缺陷图像 边界提取 形状分析 缺陷尺寸
下载PDF
Automatic Defect Detection and Grading of Single-Color Fruits Using HSV (Hue, Saturation, Value) Color Space 被引量:1
2
作者 Saeideh Gorji Kandi 《Journal of Life Sciences》 2010年第7期39-45,共7页
Machine vision has been recently utilized for quality control of food and agricultural products, which was traditionally done by manual inspection. The present study was an attempt for automatic defect detection and s... Machine vision has been recently utilized for quality control of food and agricultural products, which was traditionally done by manual inspection. The present study was an attempt for automatic defect detection and sorting of some single-color fruits such as banana and plum. Fruit images were captured using a color digital camera with capturing direction of zero degree and under illuminant D65. It was observed that growing decay and time-aging made surface color changes in bruised parts of the object. 3D RGB and HSV color vectors as well as a single channel like H (hue), S (saturation), V (value) and grey scale images were applied for color quantization of the object. Results showed that there was a distinct threshold in the histogram of the S channel of images which can be applied to separate the object from its background. Moreover, the color change via the defect and time-aging is correctly distinguishable in the hue channel image. The effect of illumination, gloss and shadow of 3D image processing is less noticeable for hue data in comparison to saturation and value. The value of H channel was quantized to five groups based on the difference between each pixel value and the H value of a healthy object. The percentage of different degree of defects can be computed and used for grading the fruits. 展开更多
关键词 Machine vision HSV color space FRUIT GRADING defect detection.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部