期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的彩色以及近红外图像去马赛克 被引量:4
1
作者 谢长江 杨晓敏 +1 位作者 严斌宇 芦璐 《计算机应用》 CSCD 北大核心 2019年第10期2899-2904,共6页
单传感器捕获的彩色近红外(RGB-NIR)图像存在光谱干扰,从而导致重建出的标准彩色图像(RGB)图像与近红外(NIR)图像存在色彩失真以及细节信息模糊。针对这个问题提出一种基于深度学习的去马赛克方法,通过引入跳远连接与稠密连接解决了梯... 单传感器捕获的彩色近红外(RGB-NIR)图像存在光谱干扰,从而导致重建出的标准彩色图像(RGB)图像与近红外(NIR)图像存在色彩失真以及细节信息模糊。针对这个问题提出一种基于深度学习的去马赛克方法,通过引入跳远连接与稠密连接解决了梯度消失和梯度弥散问题,使得网络更容易训练,并且提升了网络的拟合能力。首先,用浅层特征提取层提取了马赛克图像的像素相关性以及通道相关性等低级特征;然后,将得到的浅层特征图输入到连续多个的残差稠密块以提取专门针对去马赛克的高级语义特征;其次,为充分利用低级特征与高级特征,将多个残差稠密块提取到的特征进行组合;最后,通过全局跳远连接恢复最终的RGB-NIR图像。在深度学习框架Tensorflow上使用公共的图像与视觉表示组(IVRG)数据集、有植被的户外多光谱图像(OMSIV)数据集和森林(Forest)三个公开数据集进行实验。实验结果表明,所提方法优于基于多级自适应残差插值、基于卷积卷积和神经神经网络以及基于深度残差U型网络的主流的RGB-NIR图像去马赛克方法。 展开更多
关键词 彩色近红外图像 去马赛克 残差稠密网络 跳远连接 稠密连接
下载PDF
Turbidity analysis using visible and near-infrared light images 被引量:2
2
作者 ZHU Yuanyang ZHAO Wenzhu +1 位作者 LIU Sheng GAO Hongwen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期27-35,共9页
The conventional photoelectric detection system requires complex circuitry and spectroscopic systems as well as specialized personnel for its operation.To replace such a system,a method of measuring turbidity using a ... The conventional photoelectric detection system requires complex circuitry and spectroscopic systems as well as specialized personnel for its operation.To replace such a system,a method of measuring turbidity using a camera is proposed by combining the imaging characteristics of a digital camera and the high-speed information processing capability of a computer.Two turbidity measurement devices based on visible and near-infrared(NIR)light cameras and a light source driving circuit with constant light intensity were designed.The RGB data in the turbidity images were acquired using a self-developed image processing software and converted to the CIE Lab color space.Based on the relationship between the luminance,chromatic aberration,and turbidity,the turbidity detection models for luminance and chromatic aberration of visible and NIR light devices exhibiting values from 0-1000 NTU,less than 100 NTU,and more than 100 NTU were established.By comparing and analyzing the proposed models,the two measurement models with the best all-around performance were selected and fused to generate new measurement models.The experimental results prove that the correlation between the three models and the commercial turbidity meter measurements exhibite a significance value higher than 0.999.The error of the fusion model is within 1.05%,with a mean square error of 1.14.The visible light device has less error at low turbidity measurements and is less influenced by the color of the image.The NIR light device is more stable and accurate at full range and high turbidity measurements and is therefore more suitable for such measurements. 展开更多
关键词 image processing water quality turbidity measurement near-infrared image color space conversion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部