详细介绍隧道工程项目基础情况及其地质条件,以此为基础,应用A B A Q U S软件模拟隧道施工过程,依据模拟数值分析地层沉积量、支护压力、注浆率对路面变形的影响规律。通过数值分析可知:地层沉积量、注浆率与路面变形程度存在显著的正...详细介绍隧道工程项目基础情况及其地质条件,以此为基础,应用A B A Q U S软件模拟隧道施工过程,依据模拟数值分析地层沉积量、支护压力、注浆率对路面变形的影响规律。通过数值分析可知:地层沉积量、注浆率与路面变形程度存在显著的正相关关系;随着支护压力的增大,路面变形程度呈现先下降后上升的趋势,最低点对应的是支护压力平衡数值。依据数值分析结论给出相应的隧道施工建议,为隧道施工安全提供保障。展开更多
基于2014年6月全国14:00(北京时,下同)加密探空观测资料,设计了观测系统模拟试验(Observing System Simulation Experiments,OSSEs)和实际加密探空同化试验(Observing System Experiments,OSEs)来评估14:00加密探空对区域数值预报系统...基于2014年6月全国14:00(北京时,下同)加密探空观测资料,设计了观测系统模拟试验(Observing System Simulation Experiments,OSSEs)和实际加密探空同化试验(Observing System Experiments,OSEs)来评估14:00加密探空对区域数值预报系统的影响,并对14:00加密探空的观测布局进行了初步探索。结果表明:(1)理想模拟试验和实际同化试验中加入14:00加密探空对于提高区域模式的降水预报准确率均有积极影响,降水预报技巧评分在强降水量级提高更为明显,14:00起报结果优于20:00。(2)理想模拟试验中同化14:00加密探空能有效调整模式初始场中的动力、热力场结构和水汽分布,从而与"实况"更为接近。实际同化试验中增加14:00探空观测能修正模式风场,但对于温度和湿度分析在模式中低层略有负贡献,探空的湿度、温度观测本身存在观测偏差是一个可能的原因。(3)从观测布局来看,14:00加密探空对于数值预报具有基础作用,目前而言,GPS/PW等非常规资料不能取代14:00加密探空。综合考虑探空气球的施放成本,采用探测高度到300 h Pa、重点区域加密是一种经济的14:00增加高空观测方式。展开更多
The landfall process of typhoon Haitang which affected East China seriously was simulated by using the MM5 model and the track, intensity, precipitation and structure of typhoon were successfully reproduced. Then thro...The landfall process of typhoon Haitang which affected East China seriously was simulated by using the MM5 model and the track, intensity, precipitation and structure of typhoon were successfully reproduced. Then through the sensitive test, the effects of terrain were analyzed Results show that the irregular track during the period of typhoon passing through Taiwan and later landfalling at Fujian was in relation to the occurring and developing of orthographic impressed depression. The amount of rainfall was enhanced more than one time and the strength of typhoon was weakened 4 to 5 hPa. It is found that the effect of terrain on the structure of typhoon is limited at low level and is backward in space compared with the one at high level. In addition, the phenomenon that the equivalent temperature in the typhoon's moving direction inclines to the west on the eye of landfall may be concerned with the terrain.展开更多
Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used t...Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.展开更多
The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the tw...The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the two-phase model of air/super-cooled droplets in the Eulerian coordinate system, this paper presents the simulation of the rime ice accretion on the NACA 0012 airfoil. The predicted rime ice shape is compared with those results of measurements and simulations by other icing codes. Also the resulting effects of rime ice on airfoil aerodynamic performance are discussed. Results indicate that the rime ice accretion leads to the loss of the maximum lift coefficient by 26%, the decrease of the stall angle by about 3° and the considerable increase of the drag coefficient.展开更多
This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and ...This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and tidal current data observed at five stations in the sea adjacent to Aojiang River. The results show that the tide is mainly regular and semidiumal in the sea near Aojiang of Wenzhou. The tidal amplitudes of M2 constituent are between 170 cm - 193 cm and the lags are between 260~ - 280~, According to the comparison of analytical results of harmonic constants of these stations in 2007, 2010 and 2011, the maximum change of tidal amplitudes and phase-lag range for the main semidiurnal tides (M2, $2, N2), the diurnal tide (K1, O1) and the shallow water tide (M4, MS4, M6) are 1.8 cm - 4.4 cm and 3~ - 7~, respectively. After analyzing the tide and tidal current characteristics of Aojiang River, this paper uses an unstructured grid and Finite-Volume Coastal Ocean Model (FVCOM) to test the results of simulation. The simulated results agree well with the measured data. The new shoreline and depth which are produced by the construction projects closed in important major years, and the tide and tidal current field for the new shoreline and depth are constructed, which describe the superimposed influences of construction engineering in Aojiang estuary.展开更多
The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy p...The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, t...In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.展开更多
Based on the UCG(underground coal gasification) theory, the “three zones” which are oxidization zone, reduction zone, and drying zone, were divided; physical and chemical properties of each zone were analyzed. Facto...Based on the UCG(underground coal gasification) theory, the “three zones” which are oxidization zone, reduction zone, and drying zone, were divided; physical and chemical properties of each zone were analyzed. Factors, such as temperature, rate of water pouring, quantity of air blast, thickness of coal seam, and the operation pressure were discussed. Among the influencing factors, the temperature is the most important one.展开更多
Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionl...Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionless time were derived from 10 influencing factors of the problem by using dimensional analysis. Simulations of horizontal well in reservoir with bottom water were run to find the prediction correlation. A general and concise functional relationship for predicting breakthrough time was established based on simulation results and theoretical analysis. The breakthrough time of one conceptual model predicted by the correlation is very close to the result by Eclipse with less than 2% error. The practical breakthrough time of one well in Helder oilfield is 10 d, and the predicted results by the method is 11.2 d, which is more accurate than the analytical result. Case study indicates that the method could predict breakthrough time of horizontal well under different reservoir conditions accurately. For its university and ease of use, the method is suitable for quick prediction of breakthrough time.展开更多
文摘详细介绍隧道工程项目基础情况及其地质条件,以此为基础,应用A B A Q U S软件模拟隧道施工过程,依据模拟数值分析地层沉积量、支护压力、注浆率对路面变形的影响规律。通过数值分析可知:地层沉积量、注浆率与路面变形程度存在显著的正相关关系;随着支护压力的增大,路面变形程度呈现先下降后上升的趋势,最低点对应的是支护压力平衡数值。依据数值分析结论给出相应的隧道施工建议,为隧道施工安全提供保障。
文摘基于2014年6月全国14:00(北京时,下同)加密探空观测资料,设计了观测系统模拟试验(Observing System Simulation Experiments,OSSEs)和实际加密探空同化试验(Observing System Experiments,OSEs)来评估14:00加密探空对区域数值预报系统的影响,并对14:00加密探空的观测布局进行了初步探索。结果表明:(1)理想模拟试验和实际同化试验中加入14:00加密探空对于提高区域模式的降水预报准确率均有积极影响,降水预报技巧评分在强降水量级提高更为明显,14:00起报结果优于20:00。(2)理想模拟试验中同化14:00加密探空能有效调整模式初始场中的动力、热力场结构和水汽分布,从而与"实况"更为接近。实际同化试验中增加14:00探空观测能修正模式风场,但对于温度和湿度分析在模式中低层略有负贡献,探空的湿度、温度观测本身存在观测偏差是一个可能的原因。(3)从观测布局来看,14:00加密探空对于数值预报具有基础作用,目前而言,GPS/PW等非常规资料不能取代14:00加密探空。综合考虑探空气球的施放成本,采用探测高度到300 h Pa、重点区域加密是一种经济的14:00增加高空观测方式。
文摘The landfall process of typhoon Haitang which affected East China seriously was simulated by using the MM5 model and the track, intensity, precipitation and structure of typhoon were successfully reproduced. Then through the sensitive test, the effects of terrain were analyzed Results show that the irregular track during the period of typhoon passing through Taiwan and later landfalling at Fujian was in relation to the occurring and developing of orthographic impressed depression. The amount of rainfall was enhanced more than one time and the strength of typhoon was weakened 4 to 5 hPa. It is found that the effect of terrain on the structure of typhoon is limited at low level and is backward in space compared with the one at high level. In addition, the phenomenon that the equivalent temperature in the typhoon's moving direction inclines to the west on the eye of landfall may be concerned with the terrain.
文摘Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.
文摘The roughness effect based on the wall function method is introduced into the numerical simulation of the rime ice accretion and the resulting effect on the aerodynamic performance of the airfoil. Incorporating the two-phase model of air/super-cooled droplets in the Eulerian coordinate system, this paper presents the simulation of the rime ice accretion on the NACA 0012 airfoil. The predicted rime ice shape is compared with those results of measurements and simulations by other icing codes. Also the resulting effects of rime ice on airfoil aerodynamic performance are discussed. Results indicate that the rime ice accretion leads to the loss of the maximum lift coefficient by 26%, the decrease of the stall angle by about 3° and the considerable increase of the drag coefficient.
文摘This paper have collected the measured tides and certain tidal current data in different stages of many projects during past three to five years near the Aojiang River. The harmonic method is used to analyze tide and tidal current data observed at five stations in the sea adjacent to Aojiang River. The results show that the tide is mainly regular and semidiumal in the sea near Aojiang of Wenzhou. The tidal amplitudes of M2 constituent are between 170 cm - 193 cm and the lags are between 260~ - 280~, According to the comparison of analytical results of harmonic constants of these stations in 2007, 2010 and 2011, the maximum change of tidal amplitudes and phase-lag range for the main semidiurnal tides (M2, $2, N2), the diurnal tide (K1, O1) and the shallow water tide (M4, MS4, M6) are 1.8 cm - 4.4 cm and 3~ - 7~, respectively. After analyzing the tide and tidal current characteristics of Aojiang River, this paper uses an unstructured grid and Finite-Volume Coastal Ocean Model (FVCOM) to test the results of simulation. The simulated results agree well with the measured data. The new shoreline and depth which are produced by the construction projects closed in important major years, and the tide and tidal current field for the new shoreline and depth are constructed, which describe the superimposed influences of construction engineering in Aojiang estuary.
基金supported by the National Science and Technology Pillar Program of China (Grant No.2008BAC37B01)the National Natural Science Foundation of China (Grant Nos. 40930950 and 40921160379)
文摘The influence of urban intensity on fog evolution in the Beijing-Tianjin-Hebei (BTH) region (China) is investigated numerically with the the Weather Research and Forecasting (WRF) model coupled with the urban canopy parameterization-building energy model (UCP- BEM) urban physics scheme. The experiments were designed with a focus on the influence of different urban intensities, which are represented by a different fractional coverage of natural land, buildings, and energy consumption inside buildings in an urban environment. The results of this study indicate that urban areas notably influence fog evolution when natural land is reduced to a small fraction (e.g., less than 10%). Developed land changes fog evolution through urban effects. Higher urban intensity (HUI) generally results in warmer temperatures and lower wind speeds throughout the day, while inhibiting morning specific humidity loss and afternoon specific humidity gain because of the HUI effect on surface heat flux, surface roughness, and surface moisture flux. HUI leads to later and weaker liquid water content formation, with a higher liquid water content base, primarily due to its effect on near surface temperatures. This finding implies that HUI may inhibit the conditions for fog formation. In addition, urban areas with equal natural and developed land coverage seem to greatly enhance the upward surface moisture flux, which is attributed to the combination of a relatively large potential evaporation on developed land and an ample moisture supply from natural land. As a result, the specific humidity increases in the afternoon.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
基金Project(Y5080022) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(RC1202) supported by Scientific and Technological Program of Water Resources Department of Zhejiang Province in 2012,ChinaProject(Y201224384) supported by Scientific Research Program of Education Department of Zhejiang Province in 2012,China
文摘In order to simulate the airflow in anhydrous case and the water-air flow in groundwater case, a numerical model of airflow in soil was developed. For the nonlinearity of the governing partial differential equation, the corresponding discretization and linearization methods were given. Due to the mass transfer between air-phase and water-phase, phase states of the model elements were constantly changing. Thus, parameters of the model were divided into primary ones and secondary ones, and the primary variables changing with phase states and the secondary variables can be obtained by their functional relationship with the primary variables. Additionally, the special definite condition of this numerical model was illustrated. Two examples were given to simulate the airflow in soil whether there was groundwater or not, and the effectiveness of the numerical model is verified by comparing the results of simulation with that of exoeriment.
文摘Based on the UCG(underground coal gasification) theory, the “three zones” which are oxidization zone, reduction zone, and drying zone, were divided; physical and chemical properties of each zone were analyzed. Factors, such as temperature, rate of water pouring, quantity of air blast, thickness of coal seam, and the operation pressure were discussed. Among the influencing factors, the temperature is the most important one.
基金Project(2011ZX05009-004)supported by the National Science and Technology Major Projects of China
文摘Dimensional analysis and numerical simulations were carried out to research prediction method of breakthrough time of horizontal wells in bottom water reservoir. Four dimensionless independent variables and dimensionless time were derived from 10 influencing factors of the problem by using dimensional analysis. Simulations of horizontal well in reservoir with bottom water were run to find the prediction correlation. A general and concise functional relationship for predicting breakthrough time was established based on simulation results and theoretical analysis. The breakthrough time of one conceptual model predicted by the correlation is very close to the result by Eclipse with less than 2% error. The practical breakthrough time of one well in Helder oilfield is 10 d, and the predicted results by the method is 11.2 d, which is more accurate than the analytical result. Case study indicates that the method could predict breakthrough time of horizontal well under different reservoir conditions accurately. For its university and ease of use, the method is suitable for quick prediction of breakthrough time.