期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
实局部p-凸空间l^p,L^p(μ)(0<p<1)的共轭锥的次表示定理 被引量:3
1
作者 王见勇 《数学物理学报(A辑)》 CSCD 北大核心 2010年第6期1629-1639,共11页
该文属于非局部凸分析的范畴,研究实局部p-凸空间l^p与L^p(μ)(0<p<1)的共轭锥(l^p)_p~*与[L^p(μ)]_p~*的表示问题,得到(l^p)p~*■m^+×m^+,[L^p(μ)]_p~*■M^+(μ)×M^+(μ),称为(l^p))p~*与(l^p))p~*的次表示定理.
关键词 局部p-凸空间 赋p-范空间 (赋范)共轭 影子锥 次表示定理
下载PDF
Ultrafast Dynamics Through Conical Intersections in 2,6-dimethylpyridine Studied with Time-resolved Photoelectron Imaging
2
作者 邱学军 朱荣淑 +3 位作者 徐晏琪 布玛利亚·阿布力米提 张嵩 张冰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第5期551-556,I0003,共7页
The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm ... The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio. 展开更多
关键词 2 6-dimethylpyridine Photoelectron imaging Conical intersection Internalconversion Time-resolved spectroscopy
下载PDF
l^p(X)的共轭锥的次表示定理(0<p<1)(英文) 被引量:6
3
作者 王见勇 《数学进展》 CSCD 北大核心 2010年第6期709-718,共10页
众所周知,对于Banach空间X,l^1(X)的共轭空间可以表示为l~∞(X*).当0<p<1时l^p(X)非局部凸,但却是局部p-凸的,其共轭锥[l^p(X)]_p~*充分大足以分离空间l^p(X)中点.本文探究0<p<1时l^p(X)的共轭锥[l^p(X)]_p~*的表示问题,对... 众所周知,对于Banach空间X,l^1(X)的共轭空间可以表示为l~∞(X*).当0<p<1时l^p(X)非局部凸,但却是局部p-凸的,其共轭锥[l^p(X)]_p~*充分大足以分离空间l^p(X)中点.本文探究0<p<1时l^p(X)的共轭锥[l^p(X)]_p~*的表示问题,对于任意Banach空间X,得到次表示定理[l^p(X)]_p~*■l~∞(X_p~*).对于数域X=R或C,次表示定理简化为[lp(R)]_p~*■m^+×m^+与[l^p(C)]_p~*■mM_p^+(T). 展开更多
关键词 局部p-凸空间 p-Banach空间 赋范共轭 影子锥 次表示定理
原文传递
(l^(β_1))_(β_2)~*的次表示定理与l^(β_1)的非局部β_2-凸性(0<β_1<β_2≤1)(英文)
4
作者 王见勇 《数学进展》 CSCD 北大核心 2011年第6期741-748,共8页
对0<β_1<β_2≤1,本文得到l^(β_1)的β_2-共轭锥的次表示定理(l^(β_1))_(β_2)~*■m^+×m^+,证明l^(β_1)不是局部β_2-凸空间.
关键词 局部Β-凸空间 赋Β-范空间 (赋范)共轭 影子锥 次表示定理
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部