Aim To determine the stress on wall of the spherical cavity while the spherical cavity expanding in concrete. Methods In Eulerian coordinate, the dimensionless radial stress equations were derived for the sphericall...Aim To determine the stress on wall of the spherical cavity while the spherical cavity expanding in concrete. Methods In Eulerian coordinate, the dimensionless radial stress equations were derived for the spherically symmetric, cavity expansion problem in plastic and elastic region of concrete by means of the similarity transformation. In the equations, Mohr Coulomb yield criterion was used.Results The dimensionless radial stress profiles were obtained. The relation between the dimensionless radial stress and the locked volumetric strain was analysed.Conclusion The test results show that the relative error between the model, which is applied in the closed form penetration equations that are developed, and the test data is less than 15.8%.展开更多
In this study,ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s.The depth of penetration and mass loss of the projectiles we...In this study,ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s.The depth of penetration and mass loss of the projectiles were measured,and the residual projectiles were recovered after the penetration tests.Scanning electron microscopy and metallographic microscopy of the microstructures were performed on various sections and outer surfaces of the projectiles taken from different locations of the residual projectiles,to analyze the intrinsic mechanisms of mass abrasion.The analysis results reveal that,during high-speed projectile penetration,projectile abrasion is caused by multiple mechanisms.Based on the cavity expansion theory,a projectile penetration model was established by considering the two main mass loss mechanisms observed in the microscopic tests.The theoretical predictions of the penetration depth,mass loss rate,and change of projectile head are consistent with the experimental results obtained both in this study and previous research.展开更多
文摘Aim To determine the stress on wall of the spherical cavity while the spherical cavity expanding in concrete. Methods In Eulerian coordinate, the dimensionless radial stress equations were derived for the spherically symmetric, cavity expansion problem in plastic and elastic region of concrete by means of the similarity transformation. In the equations, Mohr Coulomb yield criterion was used.Results The dimensionless radial stress profiles were obtained. The relation between the dimensionless radial stress and the locked volumetric strain was analysed.Conclusion The test results show that the relative error between the model, which is applied in the closed form penetration equations that are developed, and the test data is less than 15.8%.
基金the National Natural Science Foundation of China(Grant No.12032006)Beijing Institute of Technology Research Fund Program for Young Scholars(Grant No.XSQD-202102011).
文摘In this study,ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s.The depth of penetration and mass loss of the projectiles were measured,and the residual projectiles were recovered after the penetration tests.Scanning electron microscopy and metallographic microscopy of the microstructures were performed on various sections and outer surfaces of the projectiles taken from different locations of the residual projectiles,to analyze the intrinsic mechanisms of mass abrasion.The analysis results reveal that,during high-speed projectile penetration,projectile abrasion is caused by multiple mechanisms.Based on the cavity expansion theory,a projectile penetration model was established by considering the two main mass loss mechanisms observed in the microscopic tests.The theoretical predictions of the penetration depth,mass loss rate,and change of projectile head are consistent with the experimental results obtained both in this study and previous research.