Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site f...Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoig6 Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index (NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index (NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 kin2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.展开更多
The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic text...The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic texture,grain size and distribution,and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction(EBSD).The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number.The fraction of low angle grain boundaries(LAGBs) decreases after CEC deformation,and a high fraction of high angle grain boundaries(HAGBs) is revealed after 8 passes of CEC.Moreover,the initial fiber texture becomes random during CEC processing and develops a new texture.展开更多
A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition ...A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition of appropriate seismogenic sources and expected maximum magnitudes, the authors take into consideration the possibility of large subduction interface earthquakes of magnitude 8.0-9.0 beneath the Barbados accretionary prism via application of a characteristic model and slip rates. The analysis has been conducted using a standard logic-tree approach. Uniform hazard spectra have been calculated for the 5% of critical damping and the horizontal component of ground motion for rock site conditions setting 5 return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s. The disaggregation results suggest that the magnitude-distance pair that dominates the hazard yields M 7.4 and 8.6 and a distance of 42.5 km in the Interface Subduction Zone beneath Barbados for the 475 and 975 years RP (return period), respectively. An event with an M 8.0 at a distance of 107.5 km in the Intraplate Subduction Zone is the second scenario that dominates the hazard for both 475 and 975 years RP.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41201445,41103041)National Science and Technology Support Program(No.2012BAJ24B01)National High Technology Research and Development Program of China(No.2009AA12200307)
文摘Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoig6 Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index (NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index (NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 kin2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.
基金Projects(50674067,51074106) supported by the National Natural Science Foundation of ChinaProject(09JC1408200) supported by the Science and Technology Commission of Shanghai Municipality,China
文摘The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic texture,grain size and distribution,and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction(EBSD).The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number.The fraction of low angle grain boundaries(LAGBs) decreases after CEC deformation,and a high fraction of high angle grain boundaries(HAGBs) is revealed after 8 passes of CEC.Moreover,the initial fiber texture becomes random during CEC processing and develops a new texture.
文摘A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition of appropriate seismogenic sources and expected maximum magnitudes, the authors take into consideration the possibility of large subduction interface earthquakes of magnitude 8.0-9.0 beneath the Barbados accretionary prism via application of a characteristic model and slip rates. The analysis has been conducted using a standard logic-tree approach. Uniform hazard spectra have been calculated for the 5% of critical damping and the horizontal component of ground motion for rock site conditions setting 5 return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s. The disaggregation results suggest that the magnitude-distance pair that dominates the hazard yields M 7.4 and 8.6 and a distance of 42.5 km in the Interface Subduction Zone beneath Barbados for the 475 and 975 years RP (return period), respectively. An event with an M 8.0 at a distance of 107.5 km in the Intraplate Subduction Zone is the second scenario that dominates the hazard for both 475 and 975 years RP.