In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamicall...In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.展开更多
Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study ...Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tectonic events during the long-term evolution of the NCC.展开更多
Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic feat...Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.展开更多
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.51304154)the Natural Science Foundation Anhui Province(No.1408085MKL92)
文摘In order to study the evolution laws during the development process of the coal face overburden rock mining-induced fissure,we studied the process of evolution of overburden rock mining-induced fissures and dynamically quantitatively described its fractal laws,based on the high-precision microseismic monitoring method and the nonlinear Fractal Geometry Theory.The results show that:the overburden rock mining-induced fissure fractal dimension experiences two periodic change processes with the coal face advance,namely a Small→ Big→ Small process,which tends to be stable;the functional relationship between the extraction step distance and the overburden rock mining-induced fissure fractal dimension is a cubic curve.The results suggest that the fractal dimension reflects the evolution characteristics of the overburden rock mining-induced fissure,which can be used as an evaluation index of the stability of the overburden rock strata,and it provides theoretical guidance for stability analysis of the overburden rock strata,goaf roof control and the support movements in the mining face.
基金supported by the National Basic Research Program of China(Grant No.2013CB733203)the National Natural Science Foundation of China(Grant Nos.41225016+1 种基金41125015)the National Science and Technology Major of China(Grant No.2011ZX05008-001)
文摘Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tectonic events during the long-term evolution of the NCC.
基金supported by National Natural Science Foundation of China(Grant No.40974020)Special Project in Ministry of Land and Resources(Grant No.SinoProbe-07)Special Project for Basic Research on the State Level(Grant No.ZDJ2009-1)
文摘Earthquake-triggered landslides usually cause great disasters,and yet their dynamic mechanisms remain poorly understood.This paper will derive a general conceptual landslide model from the geometric and kinematic features of the most landslide masses triggered by the 2008 Wenchuan earthquake.Kinematic characteristics and dynamic processes are simulated here by means of finite element method(FEM)based on the dynamic process of the discontinuous deformable body.The calculated results presented the whole course of landslide motion,and displayed some typical kinematic characteristics such as initiation,sliding,ejection,collision,flying in the air,and climbing of landslides.The simulation result also shows that,under combined seismic inertial forces and gravity,landslides will start to slip once it overcomes the friction between the sliding mass and slip-bed,then it will move from slow to fast along the slippery bed until it ejects from the slip-bed.Moreover,the high frequencies and serious damages by landslides in the Wenchuan earthquake are caused by the strong ground motion on the mountain slopes in and around the epicenter that was dramatically amplified owing to both resonances produced by the seismic event and topographical amplification by seismic motion.In addition,the modeling results suggest that the direction,amplitude,frequency,and duration of strong ground motion have a great influence on the stability of landslide mass.Therefore,the study helps us better understand dynamic mechanism of landslides,seismic hazard assessment,and dynamic earthquake triggering.