Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple abou...Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.展开更多
Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On th...Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On the basis of feature modeling,the system is able to reason feature relationships,produce feature digraph of a part,and decide the machining sequence of features.展开更多
The scale and characteristics of rock mass are important indexes of the rock mass structural plane classification. This paper firstly analyzes the spatial distribution characteristics, the structural plane types (ori...The scale and characteristics of rock mass are important indexes of the rock mass structural plane classification. This paper firstly analyzes the spatial distribution characteristics, the structural plane types (original structural plane, tectonic structural plane and hypergenic structural plane) and the associated features of the Emeishan basalts and then studies the classification schemes of the built hydropower structure planes of different rock areas (the east district, the central district and the west district) in the Emeishan basalt distribution area, Southwest China. Based on the analysis and comparison of the scale and the engineering geological characteristics of the typical structure planes in the basalt hydroelectric Stations, the types of structural planes are used in the first order classification. The secondary order classification is made by considering the impact factors of rock mass quality, e.g., the state of the structural planes, infilling, joint opening, extending length, the grade of weathering and strength. The engineering geological classification for Emeishan basalt is proposed. Because there are no evidences of a large structure presenting in study area, the first-order (Ⅰ) controlling structural planes do not appear in the classification, there only appear Ⅱ, Ⅲ, Ⅳ and Ⅴ grade structural planes influencing the rock-mass quality. According to the different rock-block types in bedding fault zone, the second-grade (Ⅱ) structural planes consisted of bedding fault zone is further classified into Ⅱ1, Ⅱ2 and Ⅱ3. The third-grade (Ⅲ) structural planes constructed by intraformational faulted zones are not subdivided. According to the different characteristics of intrusion, alteration and weathering unloading structural planes, the Ⅳ grade structure plane is divided into Ⅳ1, Ⅳ2 and Ⅳ3. According to the development characteristics of joints and fractures, the V grade structure plane is divided into fracture Ⅴ1 and columnar joint Ⅴ2. In all, the structural planes are classified into four groups with nine subsets. The research proposes the engineering geological classification of the structural plane for the hydropower project in the Emishan basalts, and the result of the study has a potential application in similar regions.展开更多
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ...Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.展开更多
Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the las...Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.展开更多
In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common dam...In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common damage phenomena, such as frost heave, subsidence deformation and frost boiling, are all caused by water translocation. Aiming at the phenomenon, the changes of moisture content of seasonal frozen soil in Changchun City are mainly studied by long-term field observation and indoor testing of physical properties under different conditions, and then the variation characteristics of moisture content in soil under different compactness and temperature conditions are realized. The results show that the increasing section of moisture content and negative temperature section all lie in O. 0 - 1.0 m of subgrade. Both lowest air and earth temperature occur in January to February, and the most negative temperature ranges from -7℃ to -10℃.展开更多
Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been colle...Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.展开更多
For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of w...For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.展开更多
The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and ...The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and the roughness tended to increase with increasing voltage of microarc oxidation. The oxide film exhibited a uniform coating and tends to be well boned to the substrate. The thickness of oxide films depended on the final voltage at a constant concentration of electrolyte solution. Ca and P were also incorporated into the oxide film during the microarc oxidation process. It was found that the electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) was suitable for microarc oxidation to form oxide film containing Ca and P on Ti substrate. The concentration of Ca and P were 11.6 at% and 6.4 at%, respectively, when microarc oxidation was performed in the electrolyte of 0.06 M Ca-GP and 0.25 M CA at current density 50 A/m^2 and final voltage 350 V. The composition of the Ca, P and Ti changed during depth profiling. The crystalline phases were only anatase when final voltage was below 300 V and rutile was presented when voltage was up to 350 V. The microstructure, phase structure and phase composition were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), energy dispersive X-ray microanalyser (EDX), and X-ray diffraction (XRD).展开更多
A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated ...A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.展开更多
To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photograp...To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.展开更多
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the...Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes 〉2 mm. The effects of rock fragments 〈2 mm in soil are generally ignored. Similar to rock fragments 〉2 ram, the presence of rock fragments 〈2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of 〈2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of 〈2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of 〈2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containin 〈2 mm rock fragment mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that 〈2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment.展开更多
The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploit...The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploitation of magnesium arose extensive attention of the public.展开更多
The authors analyzed the engineering geological characteristics of the slope of the study area (K75+840-K76+340). Two typical cross-sections have been chosen to analyze the failure modes after the excavation of the hi...The authors analyzed the engineering geological characteristics of the slope of the study area (K75+840-K76+340). Two typical cross-sections have been chosen to analyze the failure modes after the excavation of the highway. Different types of the failure modes have been calculated and analyzed. The results show that some dealing methods have been advised to ensure the stability of the slopes.展开更多
River dynamics play the most vital role in the socio-economic of the country. These rivers are highly dynamic in nature which causes extensive riverbank erosion. Active river bank erosion and bed scouring, is apprehen...River dynamics play the most vital role in the socio-economic of the country. These rivers are highly dynamic in nature which causes extensive riverbank erosion. Active river bank erosion and bed scouring, is apprehended to change the scenario, leading to loss of limited valuable land of Bangladesh. River training is being practiced in Bangladesh since 1960s but the process is very expensive especially in the Ganges and the Jamuna Rivers. Five types of river training works were selected at different reaches. Hydro-morphological characteristics of the major rivers are being evaluated not only in engineering concepts but also in socio-economic and environmental aspects. PRA (participatory rural appraisal) tools were applied to evaluate protection safety, hydraulic and hydrological connectivity, ecological and environmental characteristics, causes of failure and social acceptability. This comparative study is being carried out for closing the gap between the modem river training works and in country experience through adaptation of research findings with a view to effectively arresting river bank erosion. Sirajganj Hardpoint, Chandpur Town Protection work and Nakalia Revetment are found to be suitable and effective. A technically suitable structure may not have good social acceptance without IWRM (integrated water resource management).展开更多
On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical p...On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.展开更多
文摘Machining-features of the workplace are described by using of the object-oriented (O-O) technology. Geometrical machining-features are recognized in the given cut region by using the maximum membership priciple about the fuzzy set. Depending on the IF-THEN rule and the fuzzy matching method, the rough information of the machining-process for high-speed milling (HSM) is extracted based on the database of machining-process for HSM. The optimization model of machining-process scheme is established to obtain shorter cut time, lower cost or higher surface quality. It is helpful to form successful cases for HSM. NC programming for HSM is realized according to optimized machining-process data from HSM cases selected by the optimization model and the extracted information of machining-process.
文摘Concurrent engineering(CE)involves the consideration during the design phase of the various factors associated with the life cycle of the product.Using the principle of CE,a feature-based CAPP system is proposed.On the basis of feature modeling,the system is able to reason feature relationships,produce feature digraph of a part,and decide the machining sequence of features.
基金funded by the National Natural Science Foundation of China (Grant No.41072228)
文摘The scale and characteristics of rock mass are important indexes of the rock mass structural plane classification. This paper firstly analyzes the spatial distribution characteristics, the structural plane types (original structural plane, tectonic structural plane and hypergenic structural plane) and the associated features of the Emeishan basalts and then studies the classification schemes of the built hydropower structure planes of different rock areas (the east district, the central district and the west district) in the Emeishan basalt distribution area, Southwest China. Based on the analysis and comparison of the scale and the engineering geological characteristics of the typical structure planes in the basalt hydroelectric Stations, the types of structural planes are used in the first order classification. The secondary order classification is made by considering the impact factors of rock mass quality, e.g., the state of the structural planes, infilling, joint opening, extending length, the grade of weathering and strength. The engineering geological classification for Emeishan basalt is proposed. Because there are no evidences of a large structure presenting in study area, the first-order (Ⅰ) controlling structural planes do not appear in the classification, there only appear Ⅱ, Ⅲ, Ⅳ and Ⅴ grade structural planes influencing the rock-mass quality. According to the different rock-block types in bedding fault zone, the second-grade (Ⅱ) structural planes consisted of bedding fault zone is further classified into Ⅱ1, Ⅱ2 and Ⅱ3. The third-grade (Ⅲ) structural planes constructed by intraformational faulted zones are not subdivided. According to the different characteristics of intrusion, alteration and weathering unloading structural planes, the Ⅳ grade structure plane is divided into Ⅳ1, Ⅳ2 and Ⅳ3. According to the development characteristics of joints and fractures, the V grade structure plane is divided into fracture Ⅴ1 and columnar joint Ⅴ2. In all, the structural planes are classified into four groups with nine subsets. The research proposes the engineering geological classification of the structural plane for the hydropower project in the Emishan basalts, and the result of the study has a potential application in similar regions.
基金Supported by the National Natural Science Fundation of China (50674045)the National "973" Planning Project(2007CB209403)
文摘Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.
基金Supported by Instituto de Salud Carlos (CIBERehd)
文摘Pancreatic cancer is one of the most lethal of human malignancies ranking 4th among cancer-related death in the western world and in the United States,and potent therapeutic options are lacking.Although during the last few years there have been important advances in the understanding of the molecular events responsible for the development of pancreatic cancer,currently specific mechanisms of treatment resistance remain poorly understood and new effective systemic drugs need to be developed and probed.In vivo models to study pancreatic cancer and approach this issue remain limited and present different molecular features that must be considered in the studies depending on the purpose to fit special research themes.In the last few years,several genetically engineered mouse models of pancreatic exocrine neoplasia have been developed.These models mimic the disease as they reproduce genetic alterations implicated in the progression of pancreatic cancer.Genetic alterations such as activating mutations in KRas,or TGFb and/or inactivation of tumoral suppressors such as p53,INK4A/ARF BRCA2 and Smad4 are the most common drivers to pancreatic carcinogenesis and have been used to create transgenic mice.These mouse models have a spectrum of pathologic changes,from pancreatic intraepithelial neoplasia to lesions that progress histologically culminating in fully invasive and metastatic disease and represent the most useful preclinical model system.These models can characterize the cellular and molecular pathology of pancreatic neoplasia and cancer and constitute the best tool to investigate new therapeutic approaches,chemopreventive and/or anticancer treatments.Here,we review and update the current mouse models that reproduce different stages of human pancreatic ductal adenocarcinoma and will have clinical relevance in future pancreatic cancer developments.
基金Supported by National Natural Science Foundation of China (No.40672180)
文摘In China, seasonal frozen soil is widely distributed. The freezing damage of subgrade soil in Jilin Province has been one of major engineering geological problems troubling the safety of road, in which some common damage phenomena, such as frost heave, subsidence deformation and frost boiling, are all caused by water translocation. Aiming at the phenomenon, the changes of moisture content of seasonal frozen soil in Changchun City are mainly studied by long-term field observation and indoor testing of physical properties under different conditions, and then the variation characteristics of moisture content in soil under different compactness and temperature conditions are realized. The results show that the increasing section of moisture content and negative temperature section all lie in O. 0 - 1.0 m of subgrade. Both lowest air and earth temperature occur in January to February, and the most negative temperature ranges from -7℃ to -10℃.
基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1084)the Open Fund of Hunan provincial Key Laboratory for Safe Mining Technology of Coal Mine (No. 201103)the National Natural Science Foundation of China (No. 51274193)
文摘Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.
文摘For a safe extracting of the mine resource of the razor thin capping rock, a study of waterproof, sand prevention, roof fall prevention must be made. As a result, it’s necessary to master the engineering feature of weathering zone of bedrock. According to the lithology appraisal and X diffract analyses, the mineral feature of weathering zone of bedrock in 810 producing area has been studied in this article. By testing the physical mechanics index of weathering zone, we have found out some features of physical mechanic quality. Utilizing the determined result of viscosity index and slaking test, we reach a conclusion of the water stability of weathering zone, that is the weathering zone rock belongs to the type that is easily slaked when encountered water and the water stability is weak.
文摘The oxide films were obtained in an electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) by microarc oxidation (MAO). The oxide films displayed a porous and rough structure on the film surface, and the roughness tended to increase with increasing voltage of microarc oxidation. The oxide film exhibited a uniform coating and tends to be well boned to the substrate. The thickness of oxide films depended on the final voltage at a constant concentration of electrolyte solution. Ca and P were also incorporated into the oxide film during the microarc oxidation process. It was found that the electrolyte of calcium glycerphosphate (Ca-GP) and calcium acetate (CA) was suitable for microarc oxidation to form oxide film containing Ca and P on Ti substrate. The concentration of Ca and P were 11.6 at% and 6.4 at%, respectively, when microarc oxidation was performed in the electrolyte of 0.06 M Ca-GP and 0.25 M CA at current density 50 A/m^2 and final voltage 350 V. The composition of the Ca, P and Ti changed during depth profiling. The crystalline phases were only anatase when final voltage was below 300 V and rutile was presented when voltage was up to 350 V. The microstructure, phase structure and phase composition were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), energy dispersive X-ray microanalyser (EDX), and X-ray diffraction (XRD).
文摘A method of 3D model reconstruction based on scattered point data in reverse engineering is presented here. The topological relationship of scattered points was established firstly, then the data set was triangulated to reconstruct the mesh surface model. The curvatures of cloud data were calculated based on the mesh surface, and the point data were segmented by edge-based method; Every patch of data was fitted by quadric surface of freeform surface, and the type of quadric surface was decided by parameters automatically, at last the whole CAD model was created. An example of mouse model was employed to confirm the effect of the algorithm.
基金Program for NewCentury Excellent Talents in UniversityGrant number:50051+1 种基金The Key Project for Technology Research of Ministry Education of ChinaCrant number:106030
文摘To meet the needs in the fundus examination,including outlook widening,pathology tracking,etc.,this paper describes a robust feature-based method for fully-automatic mosaic of the curved human retinal images photographed by a fundus microscope. The kernel of this new algorithm is the scale-,rotation-and illumination-invariant interest point detector & feature descriptor-Scale-Invariant Feature Transform. When matched interest points according to second-nearest-neighbor strategy,the parameters of the model are estimated using the correct matches of the interest points,extracted by a new inlier identification scheme based on Sampson distance from putative sets. In order to preserve image features,bilinear warping and multi-band blending techniques are used to create panoramic retinal images. Experiments show that the proposed method works well with rejection error in 0.3 pixels,even for those cases where the retinal images without discernable vascular structure in contrast to the state-of-the-art algorithms.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAD05B06)
文摘Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes 〉2 mm. The effects of rock fragments 〈2 mm in soil are generally ignored. Similar to rock fragments 〉2 ram, the presence of rock fragments 〈2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of 〈2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of 〈2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of 〈2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containin 〈2 mm rock fragment mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that 〈2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment.
文摘The magnesium has some excellent properties such as ligh quality, high specific strength and stiffness, high damp and reeoverd easily compared with steel, aluminium, engineering plastic. So the application and exploitation of magnesium arose extensive attention of the public.
文摘The authors analyzed the engineering geological characteristics of the slope of the study area (K75+840-K76+340). Two typical cross-sections have been chosen to analyze the failure modes after the excavation of the highway. Different types of the failure modes have been calculated and analyzed. The results show that some dealing methods have been advised to ensure the stability of the slopes.
文摘River dynamics play the most vital role in the socio-economic of the country. These rivers are highly dynamic in nature which causes extensive riverbank erosion. Active river bank erosion and bed scouring, is apprehended to change the scenario, leading to loss of limited valuable land of Bangladesh. River training is being practiced in Bangladesh since 1960s but the process is very expensive especially in the Ganges and the Jamuna Rivers. Five types of river training works were selected at different reaches. Hydro-morphological characteristics of the major rivers are being evaluated not only in engineering concepts but also in socio-economic and environmental aspects. PRA (participatory rural appraisal) tools were applied to evaluate protection safety, hydraulic and hydrological connectivity, ecological and environmental characteristics, causes of failure and social acceptability. This comparative study is being carried out for closing the gap between the modem river training works and in country experience through adaptation of research findings with a view to effectively arresting river bank erosion. Sirajganj Hardpoint, Chandpur Town Protection work and Nakalia Revetment are found to be suitable and effective. A technically suitable structure may not have good social acceptance without IWRM (integrated water resource management).
基金Supported by the Science and Technology Development Planning Project of Jilin Province(No.201201057)
文摘On the basis of geological investigating work and experimental studies on slide zone soil of one landslide in Tibet,the authors analyzed granulometric composition,clay mineral composition and physical and mechanical properties for the soil in the slide zone.The soil samples are gravel containing fine particle.Particles larger than 2 mm occupy the main proportion with the content 51.5%--68.5%.The relative content of clay minerals is low.The clay minerals are illite smectite mixed layer and kaolinite,and their relative contents are 6%--13% and 4%-11%,respectively.The main mineral ingredient is quartz and the relative content is over 30%.Therefore,the soil’s hydrophily is poor.The cohesion and internal friction angle are high,causing preferable physical-mechanical features of slide zone soil.On the basis of the obtained data,the landslide stability is evaluated by means of limit equilibrium method.The safety factors are 3.191 and 1.92 respectively under both natural and normal water level conditions.The study results show that the landslide is stable.It can provide the appropriate basis and reference for landslide stability evaluation and landslide control in Tibet.