径向基(radial basis function,RBF)神经网络因其泛化能力强、收敛速度快的特点广泛应用于负荷预测。但传统采用K-means和自组织映射(self-organizing map,S O M)训练R B F径向基中心的方法因其全局搜索能力偏弱,仍然存在容易陷入局部...径向基(radial basis function,RBF)神经网络因其泛化能力强、收敛速度快的特点广泛应用于负荷预测。但传统采用K-means和自组织映射(self-organizing map,S O M)训练R B F径向基中心的方法因其全局搜索能力偏弱,仍然存在容易陷入局部最优解的问题,严重制约了RBF预测精度的提高。针对此问题,提出了一种基于强化学习(reinforcement learning,RL)改进的RBF短期负荷预测方法。强化学习通过环境的反馈不断完善搜索策略,具有非常突出的全局搜索能力。所提方法将强化学习以环境反馈修正搜索策略的机制应用于SOM,大幅增强了SOM的全局搜索能力,使其获得逼近最优的径向基中心,提高RBF负荷预测精度。以英国某地区2016年5~9月的负荷数据进行仿真实验。结果显示,与采用K-means和SOM方法训练径向基中心的RBF相比,所提的强化学习改进RBF方法的负荷预测平均相对误差分别由4.58%和4.37%降低至3.30%。展开更多
文摘径向基(radial basis function,RBF)神经网络因其泛化能力强、收敛速度快的特点广泛应用于负荷预测。但传统采用K-means和自组织映射(self-organizing map,S O M)训练R B F径向基中心的方法因其全局搜索能力偏弱,仍然存在容易陷入局部最优解的问题,严重制约了RBF预测精度的提高。针对此问题,提出了一种基于强化学习(reinforcement learning,RL)改进的RBF短期负荷预测方法。强化学习通过环境的反馈不断完善搜索策略,具有非常突出的全局搜索能力。所提方法将强化学习以环境反馈修正搜索策略的机制应用于SOM,大幅增强了SOM的全局搜索能力,使其获得逼近最优的径向基中心,提高RBF负荷预测精度。以英国某地区2016年5~9月的负荷数据进行仿真实验。结果显示,与采用K-means和SOM方法训练径向基中心的RBF相比,所提的强化学习改进RBF方法的负荷预测平均相对误差分别由4.58%和4.37%降低至3.30%。